K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

13 tháng 8 2018

a)Bạn xem lại đề được không

b)Đặt x^2 ra ngoài

c)Đặt x^3=t rồi quy đồng

d)Bt = -17(x^2-1), còn ẩn phụ gì nữa?

13 tháng 8 2018

tại thấy thầy ghi đề đặt ẩn phụ nên như vậy,tui cũng nghĩ ra như vậy rùi mà

a) ĐK: \(x^2+7x+7\ge0\)

Đặt \(a=\sqrt{x^2+7x+7}\)  \(\left(a\ge0\right)\)

PT \(\Rightarrow3a^2-3+2a=2\) \(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-\dfrac{5}{3}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x^2+7x+7=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)  (Thỏa mãn) 

Vậy ...

b) ĐK: \(x^2-6x+6\ge0\)

Đặt \(a=\sqrt{x^2-6x+6}\)  \(\left(a\ge0\right)\)

PT \(\Rightarrow a^2+3=4a\) \(\Leftrightarrow\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)  (Thỏa mãn)

+) Với \(a=3\) \(\Rightarrow x^2-6x+6=9\) \(\Leftrightarrow\left[{}\begin{matrix}x=3+2\sqrt{3}\\x=3-2\sqrt{3}\end{matrix}\right.\)  (Thỏa mãn)

+) Với \(a=1\) \(\Rightarrow x^2-6x+6=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)  (Thỏa mãn)

  Vậy ...

 

 

  

16 tháng 6 2021

c)C1: Áp dụng bđt AM-GM \(\Rightarrow VT\ge2>\dfrac{7}{4}\)

=> Dấu = ko xảy ra hay pt vô nghiệm

C2: Đk:\(x>0\)

Đặt \(a=\sqrt{\dfrac{x^2+x+1}{x}}\left(a>0\right)\) \(\Rightarrow\dfrac{1}{a}=\sqrt{\dfrac{x}{x^2+x+1}}\)

Pttt: \(a+\dfrac{1}{a}=\dfrac{7}{4}\Leftrightarrow4a^2-7a+4=0\) 

\(\Delta =-15<0 \) => Pt vô nghiệm

Vậy...

d) Đk: \(x\le-8;x\ge0\)

Đặt \(t=\sqrt{x\left(8+x\right)}\left(t\ge0\right)\)

Pttt: \(t^2-3=2t\Leftrightarrow t^2-2t-3=0\Leftrightarrow\left[{}\begin{matrix}t=3\left(tm\right)\\t=-1\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x\left(8+x\right)}=3\Leftrightarrow x^2+8x-9=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-9\end{matrix}\right.\) (tm)

Vậy...

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Bài 1:

1.

\((x^2-6x)^2-2(x-3)^2+2=0\)

\(\Leftrightarrow (x^2-6x)^2-2(x^2-6x+9)+2=0\)

\(\Leftrightarrow (x^2-6x)^2-2(x^2-6x)-16=0\)

Đặt $x^2-6x=a$ thì pt trở thành:

$a^2-2a-16=0$

$\Leftrightarrow a=1\pm \sqrt{17}$

Nếu $a=1+\sqrt{17}$

$\Leftrightarrow x^2-6x=1+\sqrt{17}$

$\Leftrightarrow (x-3)^2=10+\sqrt{17}$

$\Rightarrow x=3\pm \sqrt{10+\sqrt{17}}$

Nếu $a=1-\sqrt{17}$

$\Rightarrow x=3\pm \sqrt{10-\sqrt{17}}$

Vậy.........

2.

$x^4-2x^3+x=2$

$\Leftrightarrow x^3(x-2)+(x-2)=0$

$\Leftrightarrow (x-2)(x^3+1)=0$

$\Leftrightarrow (x-2)(x+1)(x^2-x+1)=0$

Thấy rằng $x^2-x+1=(x-\frac{1}{2})^2+\frac{3}{4}>0$ nên $(x-2)(x+1)=0$

$\Rightarrow x=2$ hoặc $x=-1$

Vậy.......

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Bài 2:

1.

ĐKXĐ: $x\neq 1$. Ta có:

\(x^2+(\frac{x}{x-1})^2=8\)

\(\Leftrightarrow x^2+(\frac{x}{x-1})^2+\frac{2x^2}{x-1}=8+\frac{2x^2}{x-1}\)

\(\Leftrightarrow (x+\frac{x}{x-1})^2=8+\frac{2x^2}{x-1}\)

\(\Leftrightarrow (\frac{x^2}{x-1})^2=8+\frac{2x^2}{x-1}\)

Đặt $\frac{x^2}{x-1}=a$ thì pt trở thành:

$a^2=8+2a$

$\Leftrightarrow (a-4)(a+2)=0$

Nếu $a=4\Leftrightarrow \frac{x^2}{x-1}=4$

$\Rightarrow x^2-4x+4=0\Leftrightarrow (x-2)^2=0\Rightarrow x=2$ (tm)

Nếu $a=-2\Leftrightarrow \frac{x^2}{x-1}=-2$

$x^2+2x-2=0\Rightarrow x=-1\pm \sqrt{3}$ (tm)

Vậy........

2. ĐKXĐ: $x\neq 0; 2$

$(\frac{x-1}{x})^2+(\frac{x-1}{x-2})^2=\frac{40}{49}$

$\Leftrightarrow (\frac{x-1}{x}+\frac{x-1}{x-2})^2-\frac{2(x-1)^2}{x(x-2)}=\frac{40}{49}$

$\Leftrightarrow 4\left[\frac{(x-1)^2}{x(x-2)}\right]^2-\frac{2(x-1)^2}{x(x-2)}=\frac{40}{49}$

Đặt $\frac{(x-1)^2}{x(x-2)}=a$ thì pt trở thành:

$4a^2-2a=\frac{40}{49}$

$\Rightarrow 2a^2-a-\frac{20}{49}=0$

$\Rightarrow a=\frac{7\pm \sqrt{209}}{28}$

$\Leftrightarrow 1+\frac{1}{x(x-2)}=\frac{7\pm \sqrt{209}}{28}$

$\Leftrightarrow \frac{1}{x(x-2)}=\frac{-21\pm \sqrt{209}}{28}$

$\Rightarrow x(x-2)=\frac{28}{-21\pm \sqrt{209}}$

$\Rightarrow (x-1)^2=\frac{7\pm \sqrt{209}}{-21\pm \sqrt{209}}$.

Dễ thấy $\frac{7+\sqrt{209}}{-21+\sqrt{209}}< 0$ nên vô lý

Do đó $(x-1)^2=\frac{7-\sqrt{209}}{-21-\sqrt{209}}$

$\Leftrightarrow x=1\pm \sqrt{\frac{7-\sqrt{209}}{-21-\sqrt{209}}}$

Vậy........

20 tháng 1 2019

a) <=> \(6x^2-5x+3-2x+3x\left(3-2x\right)=0\)

<=> \(6x^2-5x+3-2x+9x-6x^2=0\)

<=> \(2x+3=0\)

<=> \(x=\frac{-3}{2}\)

b) <=> \(10\left(x-4\right)-2\left(3+2x\right)=20x+4\left(1-x\right)\)

<=> \(10x-40-6-4x=20x+4-4x\)

<=> \(6x-46-16x-4=0\)

<=> \(-10x-50=0\)

<=> \(-10\left(x+5\right)=0\)

<=> \(x+5=0\)

<=> \(x=-5\)

c) <=> \(8x+3\left(3x-5\right)=18\left(2x-1\right)-14\)

<=> \(8x+9x-15=36x-18-14\)

<=> \(8x+9x-36x=+15-18-14\)

<=> \(-19x=-14\)

<=> \(x=\frac{14}{19}\)

d) <=>\(2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)

<=> \(12x+10-10x-3=8x+4x+2\)

<=> \(2x-7=12x+2\)

<=> \(2x-12x=7+2\)

<=> \(-10x=9\)

<=> \(x=\frac{-9}{10}\)

e) <=> \(x^2-16-6x+4=\left(x-4\right)^2\)

<=> \(x^2-6x-12-\left(x-4^2\right)=0\)

<=> \(x^2-6x-12-\left(x^2-8x+16\right)=0\)

<=> \(x^2-6x-12-x^2+8x-16=0\)

<=> \(2x-28=0\)

<=> \(2\left(x-14\right)=0\)

<=> x-14=0

<=> x=14

20 tháng 1 2019

Luffy , cậu sai câu c nhé , kia là -17 ạ => x=17/19

https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!

24 tháng 5 2017

Câu hỏi của tran huu dinh - Toán lớp 8 - Học toán với OnlineMath

Đây nè bạn

27 tháng 5 2017

mơn bạn mik cũng đặt ẩn phụ hoàn toàn 

zậy bạn lm giúp mik hai câu cúi nhé!!!!