K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2020

Pt <=> \(x^2-2xy-xy+2y^2=-6\)

<=> x( x - 2y) - y ( x - 2y) = -6 

<=> ( x - 2y) ( x - y) = - 6 = -3 .2 = -2. 3= -6.1 = -1.6

Vì x; y là số tự nhiên => 2y > y => x - 2y<0 < x - y 

=> Có các TH sau: 

Th1: x - 2y = - 3 và x - y = 2 <=> y = 5 và x = 7 

Th2: x - 2y =- 2 và x - y = 3 <=> x = 8; y = 5 

Th3:...

Th4:...

29 tháng 8 2021

ai giúp em bài1 và phần b bài 2 với ạ

 

AH
Akai Haruma
Giáo viên
27 tháng 12 2021

Lời giải:

PT $\Leftrightarrow x^2+x(3y-1)+(2y^2-2)=0$

Coi đây là pt bậc 2 ẩn $x$ thì:

$\Delta=(3y-1)^2-4(2y^2-2)=y^2-6y+9=(y-3)^2$. Do đó pt có 2 nghiệm:

$x_1=\frac{1-3y+y-3}{2}=-y-1$

$x_2=\frac{1-3y+3-y}{2}=2-2y$

Đến đây bạn thay vô pt ban đầu để giải pt bậc 2 một ẩn thui.

DD
25 tháng 2 2021

\(x^2-mx-3=0\)

\(\Delta=m^2+12>0\)nên phương trình luôn có hai nghiệm phân biệt \(x_1,x_2\)

Theo định lí Viete ta có: 

\(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-3\end{cases}}\).

\(\left(x_1+6\right)\left(x_2+6\right)==2019\)

\(\Leftrightarrow x_1x_2+6\left(x_1+x_2\right)+36=2019\)

\(\Rightarrow-3+6m+36=2019\)

\(\Leftrightarrow m=331\)..

NM
20 tháng 3 2022

từ phương trình số 2 ta có 
\(\left(x+y\right)\left(x+2y\right)+\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x+2y+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x+2y+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-y\\x=-2y-1\end{cases}}\)

lần lượt thay vào 1 ta có 

\(\orbr{\begin{cases}y^2+7=y^2+4y\\\left(-2y-1\right)^2+7=y^2+4y\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{7}{4}\\3y^2+8=0\end{cases}}}\)

vậy hệ có nghiệm duy nhất \(x=-y=-\frac{7}{4}\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:
$x^2-2y^2=5\Rightarrow x$ lẻ. Đặt $x=2k+1$ với $k$ nguyên 

$x^2-2y^2=5$

$\Leftrightarrow (2k+1)^2-2y^2=5$

$\Leftrightarrow 2k^2+2k-y^2=2$

$\Rightarrow y$ chẵn. Đặt $y=2t$ với $t$ nguyên

PT trở thành: $2k^2+2k-4t^2=2$
$\Leftrightarrow k^2+k-2t^2=1$

Điều này vô lý do $k^2+k-2t^2=k(k+1)-2t^2$ chẵn còn $1$ thì lẻ

Vậy pt vô nghiệm.

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

Chọn  B

21 tháng 1 2022

B

20 tháng 1 2022

B.2y2+3xy-x2