Cho a,b,c nguyên dương thỏa mãn \(c(ac+1)^2=(2c+b)(3c+b)\). Chứng minh c là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(c\left(ac+1\right)^2=\left(2c+b\right)\left(3c+b\right)\Leftrightarrow c\left(a^2c^2+2ac+1\right)=6c^2+5bc+b^2\)
\(\Leftrightarrow c\left(a^2c^2+2ac+1-6c-5b\right)=b^2\)
Gọi \(\left(c;a^2c^2+2ac+1-6c-5b\right)=d\)
Khi đó ta có \(\hept{\begin{cases}c⋮d\\a^2c^2+2ac-6c+1-5b⋮d\end{cases}\Rightarrow1-5b⋮d}\)
Đặt \(\hept{\begin{cases}c=xd\\a^2c^2+2ac-6c+1-5b=yd\end{cases}}\left[x,y\in Z;\left(x;y\right)=1\right]\)
\(\Rightarrow c\left(a^2c^2+2a-6c+1-5b\right)=xyd^2\Rightarrow b^2=xyd^2\)
\(\Rightarrow b⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy c là số chính phương.
Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
=a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
=b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.
Điều kiện đã cho có thể được viết lại thành \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)
hay \(1-\dfrac{a}{a+b}-\dfrac{b}{b+c}+1-\dfrac{c}{c+d}-\dfrac{d}{d+a}=0\)
\(\Leftrightarrow\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)
\(\Leftrightarrow\dfrac{b^2+bc-ab-b^2}{\left(a+b\right)\left(b+c\right)}+\dfrac{d^2+da-cd-d^2}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow\left(c-a\right)\left[\dfrac{b}{\left(a+b\right)\left(b+c\right)}-\dfrac{d}{\left(c+d\right)\left(d+a\right)}\right]=0\)
\(\Leftrightarrow\dfrac{b}{\left(a+b\right)\left(b+c\right)}=\dfrac{d}{\left(c+d\right)\left(d+a\right)}\) (do \(c\ne a\))
\(\Leftrightarrow b\left(cd+ca+d^2+da\right)=d\left(ab+ac+b^2+bc\right)\)
\(\Leftrightarrow bcd+abc+bd^2+abd=abd+acd+b^2d+bcd\)
\(\Leftrightarrow abc+bd^2-acd-b^2d=0\)
\(\Leftrightarrow ac\left(b-d\right)-bd\left(b-d\right)=0\)
\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)
\(\Leftrightarrow ac=bd\) (do \(b\ne d\))
Do đó \(A=abcd=ac.ac=\left(ac\right)^2\), mà \(a,c\inℕ^∗\) nên A là SCP (đpcm)
\(c\left(ac+1\right)^2=\left(2c+b\right)\left(3c+b\right)\)
\(\Leftrightarrow c\left(a^2c^2+2ac+1\right)=6c^2+2bc+3bc+b^2\)
\(\Leftrightarrow c\left(a^2c^2+2ac+1\right)-6c^2-2bc-3bc=b^2\)
\(\Leftrightarrow c\left(a^2c^2+2ac+1-6c-5b\right)=b^2\) ( 1 )
Dễ thấy \(a^2c^2+2ac-6c⋮c\) ( 2 )
Gọi d là ƯC của c và \(a^2c^2+2ac-6c-5b+1\) , ta có :
\(\orbr{\begin{cases}c⋮d\\a^2c^2+2ac-6c-5b+1⋮d\end{cases}}\Rightarrow c-a^2c^2+2ac-6c-5b+1⋮d\) ( 3 )
Từ ( 2 ) và ( 3 ) => 1 - 5b chia hết cho d
Đặt c = kd ; a2c2 + 2ac - 6c - 5b + 1 = td ( \(k;t\in Z\))
\(\Rightarrow c\left(a^2c^2+2ac+1-6c-5b\right)=kd.td=ktd^2\) ( 4 )
Từ ( 1 ) và ( 4 ) => b2 = ktd2
\(\Rightarrow b⋮d\Rightarrow5b⋮d\). Mà 1 - 5b chia hết cho d
\(\Rightarrow1⋮d\Rightarrow d=1\)
=> Đpcm
Sửa lại một tí
Chỗ ( 2 ) chỉnh dấu lại :)
( 3 ) \(c-a^2c^2-2ac+6c+5b-1⋮d\)
Từ ( 2 ) và ( 3 ) => 5b - 1 chia hết cho d
Từ ( 1 ) và ( 4 ) ... => 5b chia hết cho d
=> 1 chia hết cho d => d = 1
=> Đpcm