K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2020

a) ABCD là hình chữ nhật nên BD=AC=15cm

b) AH vuông góc với BD tại H --> Khoảng cách A tới BD là độ dài AH

Xét tam giác ABD vuông tại A, đường cao AH: \(\frac{1}{AH^2}=\frac{1}{AD^2}+\frac{1}{AB^2}\)

Định lí Pythagoras: \(BD^2=AD^2+AB^2\)

Đã biết AB=8cm, BD=15cm ---> Dễ dàng tính được AH= 6,767cm

21 tháng 2 2021

a, áp dụng Pytago cho tam giác ABC ta đc: BC= 152+82=17

diện tích tam giác  ABC=1/2. AB.BC = 1/2 AH.BC => AB.BC=AH.BC=> AH=15.8:17=120/17

b, Tứ giác AMNH là hình chữ nhật vì có 3 góc vuông.

suy ra MN=AH = 120/17

c, Ta thấy tam giác AMH đồng dạng tam giác AHB (g.g) suy ra AM/AH = AH/ AB => AM.AB =AH^2

tam giác ANH đồng dạng tam giác AHC (g.g) => AN/AH = AH/AC => AN.AC = AH^2

suy ra AM.AB = AN.AC.

a: BC=10cm

Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạngvới ΔHBA

b: AH=6*8/10=4,8cm

BH=6^2/10=3,6cm

CH=10-3,6=6,4cm

19 tháng 7 2019

a.Tam giác ADC vuông tại D :

\(AC=\sqrt{AD^2+CD^2}=\sqrt{8^2+15^2}=17\)(cm)

b.Xét tam giác ACD vuông tại D

Theo hệ thức lượng ta có:

DM.AC=AD.DC

DM=\(\frac{8\cdot15}{17}=\frac{120}{17}\)(cm)

c.Ta thấy tam giác ANM ~ tam giác INB

mà tam giác INB ~  tam giác ICM

vậy tam giác ANM ~ tam giác ICM

từ đó ta có được 

MN.MI=CM.AM

Mặt khác áp dụng htl trong tam giác ADC ta có: CM.AM=DI2

Vậy MN.MI=DI2

@.@

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

=>góc HAB=góc ACB

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>HA/HC=HB/HA

=>HA^2=HB*HC

c: BC=căn 15^2+20^2=25cm

BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=20/8=2,5

=>AD=7,5cm

BD=căn 15^2+7,5^2=15/2*căn 5(cm)