A={x\(\varepsilon\)R/ x<5}
B={x\(\varepsilon\) R/ 0<x<1}
tìm A giao B, B\A, \(C^{AUB}_R\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x^2+x+1-\frac{3}{4}x^2-\frac{3}{2}-\frac{3}{4}+\frac{3}{4}\left(x^2+2x+1\right)}{x^2+2x+1}=\frac{\frac{1}{4}\left(x^2-2x+1\right)+\frac{3}{4}\left(x^2+2x+1\right)}{x^2+2x+1}\)
\(=\frac{1}{4}.\frac{\left(x-1\right)^2}{\left(x+1\right)^2}+\frac{3}{4}\ge\frac{3}{4}\)
Vậy GTNN cùa A là \(\frac{3}{4}khix=1\)
Ta có:
\(B=\frac{x^4+x^2+5-\frac{19}{20}x^4-\frac{19}{10}x-\frac{19}{20}+\frac{19}{20}\left(x^4+2x^2+1\right)}{x^4+2x^2+1}=\frac{\frac{1}{20}\left(x^4-18x^2+81\right)+\frac{19}{20}\left(x^4+2x^2+1\right)}{x^4+2x^2+1}\)
\(=\frac{1}{20}.\frac{\left(x^2-9\right)^2}{\left(x^2+1\right)^2}+\frac{19}{20}\ge\frac{19}{20}\)
Vậy GTLN của B là 19/20 khi x = -3 hoăc x = 3.