Mọi người cho mik hỏi
Khi phân tích đa thức thành nhân tử nên ưu tiên dùng những phương pháp nào
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(2x^2+3881x-17505=2x^2-9x+3890x-17505\)
\(=x\left(2x-9\right)+1945\left(2x-9\right)=\left(2x-9\right)\left(x+1945\right)\)
2x2+3881x-17505
= 2x2+3890x-9x-17505
=2x(x+1945)-9(x+1945)
=(x+1945)(2x-9)
Đúng thì k giúp mình nha
Bài 2:
1) \(x^2-4x+4=\left(x-2\right)^2\)
2) \(x^2-9=x^2-3^2=\left(x-3\right)\left(x+3\right)\)
3) \(1-8x^3=\left(1-2x\right)\left(1+2x+4x^2\right)\)
4) \(\left(x-y\right)^2-9x^2=\left(x-y\right)^2-\left(3x\right)^2=\left(x-y-3x\right)\left(x-y+3x\right)=\left(-2x-y\right)\left(4x-y\right)\)
5) \(\dfrac{1}{25}x^2-64y^2=\left(\dfrac{1}{5}x-8y\right)\left(\dfrac{1}{5}x+8y\right)\)
6) \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
\(a,=\left(2a-1\right)\left(2a+1\right)\\ b,=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\\ c,=\left(16-3x\right)\left(16+3x\right)\\ d,Sửa:-36x^2+24x-4=-4\left(9x^2-6x+1\right)=-4\left(3x-1\right)^2\)
\(10x-25-x^2=-\left(x^2-10x+25\right)\)
\(=-\left(x^2-2.x.5+5^2\right)=-\left(x-5\right)^2\)
\(=\left(4-a-b\right)\left(4+a-b\right)\), đằng trước là dấu trừ thì khi bỏ ngoặc phải đổi dấu chứ nhỉ :0
\(\Leftrightarrow x^2-10x+25=0\\ \Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\)
\(=x^4+2x^2+1-\left(\sqrt{2}x\right)^2\)
\(=\left(x^2+1\right)^2-\left(\sqrt{2}x\right)^2\)
\(=\left(x^2+1-\sqrt{2}x\right)\left(x^2+1+\sqrt{2}x\right)\)
\(x^4+1\)
\(=x^4+2x^2+1-2x^2\)
\(=\left(x^2+1\right)^2-\left(x\sqrt{2}\right)^2\)
\(=\left(x^2-x\sqrt{2}+1\right)\left(x^2+x\sqrt{2}+1\right)\)
Dùng hệ quả của định lí Bezout cũng được :)) nhưng áp dụng cho đa thức bậc 3, 4 là chủ yếu