K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2020

Kẻ CH\(\perp\)AB (H\(\in\)AB)

\(\Delta\)BCH vuông tại H có ^B = 600 nên BH = 1/2BC (cạnh đối diện với góc 300 trong tam giác vuông bằng nửa cạnh huyền) hay BC = 2BH

Áp dụng định lý Py-ta-go vào các tam giác AHC và HBC cùng vuông tại H, ta được: AC2 = AH2 + HC2 = (AB - HB)2 + HC2 = AB2 - 2.AB.HB + HB2 + HC2 = AB2 - AB.BC + BC2 (do theo chứng minh trên thì BC = 2BH)

Vậy AC2 = AB2 + BC2 - AB.BC (đpcm)

31 tháng 1 2018

undefined

2 tháng 10 2017

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Do AC > A'C' nên lấy được điểm C1 trên cạnh AC sao cho AC1=A′C′. Ta có tam giác vuông ABC1 bằng tam giác vuông A'B'C', suy ra B′C′=BC1. Mặt khác hai đường xiên BC và BC1 kẻ từ B đến đường thẳng AC lần lượt có hình chiếu trên AC là AC và AC1. Vì AC > AC1 nên BC > BC1. Suy ra BC > B'C'.

16 tháng 8 2018

Dùng phản chứng:

- Giả sử AC < A'C'. Khi đó theo chứng minh câu a) ta có BC < B'C'. Điều này không đúng với giả thiết BC > B'C'.

Giả sử AC = A'C'. Khi đó ta có ΔABC = ΔA'B'C' (c.g.c). Suy ra BC = B'C'.

Điều này cũng không đúng với giả thiết BC > B'C'. Vậy ta phải có AC > A'C'.

(Nếu sử dụng định lý Pytago thì có thể giải bài toán sau)

Trong tam giác vuông ABC có BC 2= AB 2+ AC 2 (1)

Trong tam giác vuông A'B'C' có B'C' 2= A'B' 2+ A'C' 2 (2)

Theo giả thiết AB = A'B' nên từ (1) và (2) ta có:

- Nếu AC > A'C' thì AC 2 > A'C' 2, suy ra BC 2 > B'C' 2 hay BC > B'C'

- Nếu BC > B'C' thì BC 2 > B'C' 2, suy ra AC 2 > A'C' 2 hay AC > A'C'.

3 tháng 2 2020

kẻ BH _|_ BC tại H 

xét tam giác ABH vuông tại H 

=> góc ABH + góc BAC = 90  (đl)

góc BAC = 60 (gt)

=> góc ABH = 30 ; xét tam giác ABH vuông tại H 

=> AH = BA/2 (định lí)

=> AB = 2AH                                                                 (1)

xét tam giác ABH vuông tại H 

=> AB^2 = AH^2 + BH^2 (đl pytago)

=> BH^2 = AB^2 - AH^2                                                (2)

xét tam giác BHC vuông tại H 

=> BC^2 = HC^2 + BH^2 (đl Pytago)

HC = AC - AH

=> BC^2 = (AC - AH)^2 + BH^2  

=> BC^2 = AC^2 - 2AC.AH + AH^2 + BH^2       và (1)(2)

=> BC^2 = AC^2 - AB.AC + AH^2 + AB^2 - AH^2

=> BC^2 = AB^2 + AC^2 - AB.AC

a: Do AC > A'C' nên lấy được điểm C1 trên cạnh AC sao cho AC1=A′C′.

Ta có  ΔABC1=ΔA'B'C'

Suy ra B′C′=BC1

Mặt khác hai đường xiên BC và BC1 kẻ từ B đến đường thẳng AC lần lượt có hình chiếu trên AC là AC và AC1.

Vì AC > AC1 nên BC > BC1.

Suy ra BC > B'C'.

b: 

-Giả sử AC<A'C'.

Khi đó theo chứng minh câu a) ta có BC < B'C'. Điều này không đúng với giả thiết BC > B'C'.

Giả sử AC=A'C'. Khi đó ta có ΔABC=ΔA'B'C' (c.g.c).

Suy ra BC=B'C'.

Điều này cũng không đúng với giả thiết BC>B'C'. Vậy ta phải có AC>A'C'.