tìm dư trong phép chia: \(f\left(x\right)=x^{27}+x^9+x^3+x\) chia cho \(g\left(x\right)=x^2-1\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=\left(x^4+x\right)+\left(3x^3+3\right)+x^2-5x+4=x\left(x^3+1\right)+3\left(x^3+1\right)+x^2-5x+4\)
Để dư bằng 0 thì \(x^2-5x+4=0\)
\(\Rightarrow x\left(x-4\right)-\left(x-4\right)=0\)
\(\Rightarrow\left(x-4\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)
\(f\left(x\right)=6x^3-7x^2-16x+m\)
Do \(f\left(x\right)\) chia hết \(2x-5\), theo định lý Bezout:
\(f\left(\dfrac{5}{2}\right)=0\Rightarrow6.\left(\dfrac{5}{2}\right)^3-7.\left(\dfrac{5}{2}\right)^2-16.\left(\dfrac{5}{2}\right)+m=0\)
\(\Rightarrow m=-10\)
Khi đó \(f\left(x\right)=6x^3-7x^2-16x-10\)
Số dư phép chia cho \(3x-2\):
\(f\left(\dfrac{2}{3}\right)=6.\left(\dfrac{2}{3}\right)^3-7.\left(\dfrac{2}{3}\right)^2-16.\left(\dfrac{2}{3}\right)-10=-22\)
Do chia hết , theo định lý Bezout:
Khi đó
Số dư phép chia cho :
tách ra \(\left(x+3\right)\left(x^2-3x+9\right):\left(x^2-3x+9\right)=\left(x+3\right)\)
mình nha
đa thức chia có bậc 2 nên đa thức dư có bậc không quá 1. vậy đa thức dư có bậc nhất dạng ax+b
Ta có: \(x^{67}+x^{47}+x^{27}+x^7+x+1=\left(x^2-1\right).Q\left(x\right)+ax+b\)
Cho x=1 rồi x=-1 ta được: \(\hept{\begin{cases}1+1+1+1+1+1=a+b\\-1-1-1-1-1+1=-a+b\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=6\\-a+b=-4\end{cases}\Leftrightarrow\hept{\begin{cases}a=5\\b=1\end{cases}}}\)
Vậy dư trong phép chia trên là 5x+1
1) Ta có f(x) = (x - 2)g(x) + 2005
f(x) = (x - 3)h(x) + 2006
Do đa thức x2 - 5x + 6 là đa thức bậc hai nên số dư sẽ là đa thức bậc nhất hoặc hạng tử tự do.
Giả sử f(x) = (x - 2)(x - 3)t(x) + ax + b
Ta có: f(x) = (x - 2)(x - 3)t(x) + ax + b = (x - 2)[(x - 3)t(x) + a] + 2a + b , suy ra ra 2a + b = 2005
f(x) = (x - 2)(x - 3)t(x) + ax + b = (x - 3)[(x - 2)t(x) + a] + 3a + b , suy ra ra 3a + b = 2006
Từ đó ta tìm được a = 1; b = 2003
Vậy f(x) chia cho x2 - 5x + 6 dư x + 2003.
Ủa sao chự nhiên có f(x) ở đây. À mà nói vậy thì cũng sai, chứ câu này chỉ có fan KPOP mới hiểu!^-^
Đề có sao không bạn \(1\sqrt{2}=\sqrt{2}\)mà
Thấy hơi lạ, toán lớp 8 mak dùng căn như thế này thì lần đầu gặp . Nhưng mk vẫn làm cái dạng, ví dụ bạn viết sai đề thì có thể nhìn dạng mak làm lại
Ta có đa thức chia g(x) là đa thức bậc 2 nên đa thức dư là đa thức có bậc không lớn hơn 1 .
Do đó gọi đa thức dư là ax+b ( lưu ý ở đây không thêm điều kiện a khác 0 do ax+b cs thể là đa thức bậc 0)
Ta có
\(x^{27}+x^9+x^3+x=\left(x^2-\sqrt{2}\right)q\left(x\right)+ax+b\)
\(x^{27}+x^9+x^3+x=\left(x-\sqrt[4]{2}\right)\left(x+\sqrt[4]{2}\right)q\left(x\right)+ax+b\left(1\right)\)
Nếu \(x=\sqrt[4]{2}\)thì (1) trở thành : \(5\cdot\sqrt[4]{2}+65\cdot\left(\sqrt[4]{2}\right)^3=a\cdot\sqrt[4]{2}+b\)
Nếu \(x=-\sqrt[4]{2}\)thì (1) trở thành \(-5\cdot\sqrt[4]{2}-65\cdot\left(\sqrt[4]{2}\right)^3=-a\cdot\sqrt[4]{2}+b\)
Từ đó ta suy ra được .\(a=5+65\cdot\sqrt{2}\), \(b=0\)
Vậy đa thức dư là \(\left(5+65\cdot\sqrt{2}\right)x\)
Lưu ý : mấy cái phép tính căn thức thì bạn tự search google coi nhé. Nếu mình làm ra thì dài lắm