\(f\left(x\right)=6x^3-7x^2-16x+m\cdot f\left(x\right)\) chia hết cho 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 1 2024

\(f\left(x\right)=6x^3-7x^2-16x+m\)

Do \(f\left(x\right)\) chia hết \(2x-5\), theo định lý Bezout:

\(f\left(\dfrac{5}{2}\right)=0\Rightarrow6.\left(\dfrac{5}{2}\right)^3-7.\left(\dfrac{5}{2}\right)^2-16.\left(\dfrac{5}{2}\right)+m=0\)

\(\Rightarrow m=-10\)

Khi đó  \(f\left(x\right)=6x^3-7x^2-16x-10\)

Số dư phép chia cho \(3x-2\):

\(f\left(\dfrac{2}{3}\right)=6.\left(\dfrac{2}{3}\right)^3-7.\left(\dfrac{2}{3}\right)^2-16.\left(\dfrac{2}{3}\right)-10=-22\)

6 tháng 1 2024

f(x)=6x37x216x+m

Do �(�)f(x) chia hết 2�−52x5, theo định lý Bezout:

�(52)=0⇒6.(52)3−7.(52)2−16.(52)+�=0f(25)=06.(25)37.(25)216.(25)+m=0

⇒�=−10m=10

Khi đó  �(�)=6�3−7�2−16�−10f(x)=6x37x216x10

Số dư phép chia cho 3�−23x2:

�(23)=6.(23)3−7.(23)2−16.(23)−10=−22f(32)=6.(32)37.(32)216.(32)10=22

NV
21 tháng 9 2019

Bạn vào đây xem thử

Câu hỏi của bababa ânnnanana - Toán lớp 8 | Học trực tuyến

15 tháng 9 2016

số dư là -1

12 tháng 1 2024

Thực hiện các phép chia đa thức, thu được:

\(f\left(x\right)=\left(x+3\right)\left[x^2+\left(b-3\right)x+\left(c-3b+9\right)\right]+d-3c+9b-27\)

\(f\left(x\right)=\left(x-4\right)\left[x^2+\left(b+4\right)x+c+4b+16\right]+d+4c+16b+64\)

\(f\left(x\right)=\left(x+3\right)\left(x-4\right)\left(x+b+1\right)+\left(c+b+13\right)x+d+12b+12c\)

Theo đề bài, ta có \(d-3c+9b-27=1\)      (1)

\(d+4c+16b+64=8\)       (2)

\(b+1=-3\) \(\Leftrightarrow b=-4\)

và \(\left(b+c+13\right)x+d+12b+12c\ne0\)        (3)

Thế \(b=-4\) vào (1) và (2), thu được

\(d-3c-36-27=1\Leftrightarrow d-3c=64\)

và \(d+4c-64+64=8\) \(\Leftrightarrow d+4c=8\)

Từ đó suy ra \(\left(c;d\right)=\left(-8;40\right)\)

Thử lại, thấy thỏa mãn.

Do đó, \(\left(b,c,d\right)=\left(-4,-8,40\right)\)

AH
Akai Haruma
Giáo viên
26 tháng 10 2018

Lời giải:

a)

\(f(-3)=(-3)^2=9; f(-\frac{1}{2})=(\frac{-1}{2})^2=\frac{1}{4}\)

\(f(0)=0^2=0\)

\(g(1)=3-1=2; g(2)=3-2=1; g(3)=3-3=0\)

b)

\(2f(a)=g(a)\)

\(\Leftrightarrow 2a^2=3-a\)

\(\Leftrightarrow 2a^2+a-3=0\Leftrightarrow (2a+3)(a-1)=0\)

\(\Rightarrow \left[\begin{matrix} a=\frac{-3}{2}\\ a=1\end{matrix}\right.\)