Tìm GTNN của biểu thức x^3(16-x^3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1:
\(A=\frac{3x^4+16}{x^3}=\frac{x^4+x^4+x^4+16}{x^3}\)
\(\ge\frac{4\sqrt[4]{16.x^{12}}}{x^3}=4.2=8\)
Vậy GTNN là 8 đạt được tại x = 2
Cách 2:
\(A=\frac{3x^4+16}{x^3}=8+\frac{3x^4-8x^3+16}{x^3}\)
\(=8+\frac{\left(x-2\right)^2\left(3x^2+4x+4\right)}{x^3}\ge8\)
Dấu = xảy ra khi x = 2
Ta có: |x - 15| + |x - 16| + |x - 17| = (|x - 15| + |x - 17|) + |x - 16| = (|15 - x| + |x - 17|) + |x - 16|
Đặt A = |15 - x| + |x - 17| \(\ge\)|15 - x + x - 17| = |-2| = 2 (1)
Dấu "=" xảy ra <=> (15 - x)(x - 17) \(\ge\)0
<=> 15 \(\le\)x \(\le\)17 (2)
Đặt B = |x - 16| \(\ge\)0 (3)
Dấu "=" xảy ra <=> x - 16 = 0 <=> x = 16 (4)
Từ (1) ; (2);(3); (4) => Min |x - 15| + |x - 16| + |x - 17| = 2 khi x = 19
Ta có:
Đặt biểu thức là A1 \(=\left|x-15\right|+\left|x-17\right|\)
\(\Rightarrow A_1\ge\left|x-15+17-x\right|\forall x\)
\(\left|x-16\right|\ge0\forall x\left(1\right)\)
\(\left|x-16\right|\ge2\forall x\left(2\right)\)
Từ (1) và (2) ta có:
\(BT=A_1+\left|x-16\right|\ge+0=2\)
dấu "=" xảy ra khi \(\Leftrightarrow\hept{\begin{cases}\left(x-15\right)\left(x-17\right)\ge0\\\left|x-16\right|=0\end{cases}}\)
\(\Leftrightarrow\left|x-16=0\right|\)
\(\hept{\begin{cases}x-15\ge0\\17-x\ge0\end{cases}}\)
\(\hept{\begin{cases}x-15\le0\\17-x\le0\end{cases}}\)
\(\Rightarrow x=16\)
\(\hept{\begin{cases}x\ge15\\x\le17\end{cases}}\)
\(\hept{\begin{cases}x\le15\\x\ge17\left(VL\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=16\\15\le x\le17\end{cases}}\)
\(\Leftrightarrow x=16\)
Vậy Min của Bt này là 16
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
Ta có BĐT : \(a.b\le\left(\frac{a+b}{2}\right)^2\forall a,b\). Do đó :
\(x^3.\left(16-x^3\right)\le\left(\frac{x^3+16-x^3}{2}\right)^2=\left(\frac{16}{2}\right)^2=64\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=16-x^3\)
\(\Leftrightarrow x^3=8\Leftrightarrow x=2\)
Vậy GTLN của \(x^3\left(16-x^3\right)\) là \(64\) khi \(x=2\)