K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: AD=DE(gt)

mà A,D,E thẳng hàng(gt)

nên D là trung điểm của AE

Xét ΔAEN có

D là trung điểm của AE(cmt)

M là trung điểm của AN(gt)

Do đó: DM là đường trung bình của ΔAEN(Định nghĩa đường trung bình của tam giác)

⇒DM//EN và \(DM=\frac{EN}{2}\)(Định lí 2 về đường trung bình của tam giác)

Ta có: DM//EN(cmt)

EN//BC(gt)

Do đó: DM//BC(Định lí 3 từ vuông góc tới song song)

Xét tứ giác DMCB có DM//BC(cmt)

nên DMCB là hình thang có hai đáy là DM và BC(Định nghĩa hình thang)

Hình thang DMCB(DM//BC) có \(\widehat{DBC}=\widehat{NCB}\)(hai góc ở đáy của ΔABC cân tại A)

nên DMCB là hình thang cân(Định nghĩa hình thang cân)

b) Ta có: DM//BC(cmt)

⇒MI//BC(I∈DM)

\(\widehat{IMN}=\widehat{BCN}\)(hai góc so le trong)

Ta có: DE=EB(gt)

mà D,E,B thẳng hàng(gt)

nên E là trung điểm của DB

Xét hình thang DMCB(DM//BC) có

E là trung điểm của DB(cmt)

EN//DM//BC(cmt)

Do đó: N là trung điểm của MC(Định lí 3 về đường trung bình của hình thang)

Xét ΔNMI và ΔNCB có

\(\widehat{IMN}=\widehat{BCN}\)(cmt)

MN=CN(N là trung điểm của MC)

\(\widehat{MNI}=\widehat{CNB}\)(hai góc đối đỉnh)

Do đó: ΔNMI=ΔNCB(g-c-g)

⇒MI=CB(hai cạnh tương ứng)

c) Xét tứ giác MICB có MI//BC(cmt) và MI=BC(cmt)

nên MICB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒MB=CI(Hai cạnh đối của hình bình hành MICB)

mà MB=CD(hai đường chéo của hình thang cân DMCB)

nên CI=CD

Xét ΔCDI có CI=CD(cmt)

nên ΔCDI cân tại C(Định nghĩa tam giác cân)

d) Ta có: \(DM=\frac{EN}{2}\)(cmt)

nên \(EN=2\cdot DM\)(1)

Xét hình thang DMCB(DM//CB) có

E là trung điểm của DB(cmt)

N là trung điểm của MC(cmt)

Do đó: EN là đường trung bình của hình thang DMCB(Định nghĩa đường trung bình của hình thang)

\(\Leftrightarrow EN=\frac{DM+BC}{2}\)(2)

Từ (1) và (2) suy ra \(2\cdot DM=\frac{DM+BC}{2}\)

\(\Leftrightarrow DM+BC=4\cdot DM\)

\(\Leftrightarrow BC=3\cdot DM\)

mà BC=MI(cmt)

nên \(MI=3\cdot MD\)(đpcm)

31 tháng 12 2021

a: Xét ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Do đó: DE//BC

hay BDEC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BDEC là hình thang cân

4 tháng 1 2017

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành

5 tháng 11 2017

a)  gócm=gócb =gócc=gócn mn // bc

b) ncf=cne=anm=gócb=cfe=fen; tam giác ine=tam giác icf suy ra ne=cf 

c) suy ra necf là hình bình hành có fe=in+nc=ie+if =nc nên necf là hcn