Cho x,y,z dương và x+y+z=3. Tìm GTNN của \(A=\frac{3+x^2}{y+z}+\frac{3+y^2}{z+x}+\frac{3+z^2}{x+y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=1.\)
Dấu "=" xảy ra khi:
\(x=y=z=\frac{2}{3}\)
Áp dụng BĐT Cô-si cho 2 số dương \(\frac{x^2}{y+z}\)và \(\frac{y+z}{4}\), ta được :
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=2.\frac{x}{2}=x\) ( 1 )
Tương tự : \(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\) ( 2 )
\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\) ( 3 )
Cộng ( 1 ) , ( 2 ) và ( 3 ) , ta được :
\(\left(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\right)+\frac{x+y+z}{2}\ge x+y+z\)
\(P\ge\left(x+y+z\right)-\frac{x+y+z}{2}=1\)
Dấu " = " xảy ra \(\Leftrightarrow\)x = y = z = \(\frac{2}{3}\)
Vậy GTNN của P là 1 \(\Leftrightarrow\)x = y = z = \(\frac{2}{3}\)
Áp dụng bđt cosi ta có
\(\frac{x^3}{y^2+z}+\frac{9}{25}x\left(y^2+z\right)\ge\frac{6}{5}x^2\)
................................................................,,,,
=>\(VT\ge\frac{6}{5}\left(x^2+y^2+z^2\right)-\frac{9}{25}\left(xy^2+yz^2+zx^2+xy+yz+xz\right)\)
Ta có \(\left(x+y+z\right)\left(x^2+y^2+z^2\right)=\left(x^3+xz^2\right)+\left(y^3+yx^2\right)+\left(z^3+zy^2\right)+x^2z+y^2x+z^2y\)
\(\ge3\left(xy^2+yz^2+zx^2\right)\)
=> \(xy^2+yz^2+zx^2\le\frac{2}{3}\left(x^2+y^2+z^2\right)\)
Lại có \(xy+yz+xz\le x^2+y^2+z^2\)
Khi đó
\(VT\ge\frac{6}{5}\left(x^2+...\right)-\frac{9}{25}\left(\frac{5}{3}\left(x^2+y^2+z^2\right)\right)=\frac{3}{5}\left(x^2+y^2+z^2\right)\ge\frac{\left(x+y+z\right)^2}{5}=\frac{4}{5}\)
Vậy MinA=4/5 khi x=y=z=2/3
\(P=\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}\)
\(\ge3\sqrt[3]{\frac{1}{xyz\left(x+1\right)\left(y+1\right)\left(z+1\right)}}\)
Mà theo BĐT AM - GM ta có tiếp:
\(xyz\le\left(\frac{x+y+z}{3}\right)^3=1\)
\(\left(x+1\right)\left(y+1\right)\left(z+1\right)\le\left(\frac{x+y+z+3}{3}\right)^3=8\)
\(\Rightarrow P\le\frac{3}{2}\)
Đẳng thức xảy ra tại x=y=z=1
Vậy..................
Vấn đề duy nhất của bài này là đánh giá cụm \(\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\)
Trước hết, ta chứng minh bổ đề sau:
Với hai dãy số dương \(x\ge y\ge z\) và \(a\ge b\ge c\) ta luôn có: \(ax+by+cz\ge bx+cy+az\)
\(\Leftrightarrow\left(a-b\right)x+\left(b-c\right)y+\left(c-a\right)z\ge0\)
\(\Leftrightarrow\left(a-b\right)x-\left(a-b\right)y+\left(a-c\right)y-\left(a-c\right)z\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(x-y\right)+\left(a-c\right)\left(y-z\right)\ge0\) (luôn đúng)
Không mất tính tổng quát, giả sử \(x\ge y\ge z\Rightarrow\left\{{}\begin{matrix}x^3\ge y^3\ge z^3\\\frac{1}{y^2+z^2}\ge\frac{1}{z^2+x^2}\ge\frac{1}{x^2+y^2}\end{matrix}\right.\)
Áp dụng bổ đề ta có:
\(\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\ge\frac{y^3}{y^2+z^2}+\frac{z^3}{z^3+x^2}+\frac{x^3}{x^2+y^2}\)
Mặt khác: \(\frac{x^3}{x^2+y^2}=x-\frac{xy^2}{x^2+y^2}\ge x-\frac{xy^2}{2xy}=x-\frac{1}{2}y\)
Tương tự và cộng lại: \(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{x^2+z^2}\ge\frac{1}{2}\left(x+y+z\right)\)
\(\Rightarrow P\ge\frac{1}{3}\left(x+y+z\right)^2+\frac{1}{2}\left(x+y+z\right)-\frac{7}{6}\left(x+y+z\right)\)
\(P\ge\frac{1}{3}\left(x+y+z\right)^2-\frac{2}{3}\left(x+y+z\right)+\frac{1}{3}-\frac{1}{3}\)
\(P\ge\frac{1}{3}\left(x+y+z-1\right)^2-\frac{1}{3}\ge-\frac{1}{3}\)
\(P_{min}=-\frac{1}{3}\) khi \(x=y=z=\frac{1}{3}\)
Dễ dàng chứng minh được \(\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\ge\frac{x+y+z}{2}\)(khi nào rảnh em gõ ha! Giờ lười lắm:v)
Do đó \(P\ge x^2+y^2+z^2+\frac{x+y+z}{2}-\frac{7}{6}\left(x+y+z\right)\)
\(\ge\frac{\left(x+y+z\right)^2}{3}-\frac{2}{3}\left(x+y+z\right)=\frac{t^2-2t}{3}\) (đặt t = x+y+z)
\(=\frac{\left(t^2-2t+1\right)-1}{3}=\frac{\left(t-1\right)^2-1}{3}\ge-\frac{1}{3}\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=y=z\\t=x+y+z=1\end{matrix}\right.\Leftrightarrow x=y=z=\frac{1}{3}\)
P/s: Is that true?
\(\frac{x+1}{1+y^2}=\frac{\left(x+1\right)\left(y^2+1\right)-y^2\left(x+1\right)}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{1+y^2}\ge x+1-\frac{xy+y}{2}\)
Tương tự ta có:
\(\frac{y+1}{z^2+1}\ge y+1-\frac{yz+z}{2}\)
\(\frac{z+1}{1+x^2}\ge z+1-\frac{zx+x}{2}\)
Cộng vế theo vế ta có:
\(Q\ge3+\left(x+y+z\right)-\frac{x+y+z+xy+yz+zx}{2}\)
\(=3+\frac{x+y+z-xy-yz-zx}{2}\)
Có BĐT phụ sau:
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) ( tự cm )
\(\Rightarrow xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=3\)
Khi đó \(P\ge3\)
Dấu "=" xảy ra tại \(x=y=z=1\)
:(
\(A=\frac{3+x^2}{y+z}+\frac{3+y^2}{z+x}+\frac{3+z^2}{x+y}\)
\(=3\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)+\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)\)
\(\ge3\cdot\frac{9}{2\left(x+y+z\right)}+\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}\)
\(=\frac{27}{2\cdot3}+\frac{3}{2}=6\)
Đẳng thức xảy ra tại x=y=z=1