cho tam giác ABC vuông tại A có cạnh AB=3, AC=4. phép vị tự tâm I tỉ số \(k=-\sqrt{2}\) biến tam giác ABC thành A'B'C'. tính diện tích tam giác A'B'C'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
B = V A ; k ( M ) và 2 M A → = A B →
C = V A ; k ( N ) và 2 N A → = A C →
=>k = 2
Đáp án B
G A → = − 2 G A ' → ⇒ V G , − 2 A ' = A G B → = − 2 G B ' → ⇒ V G , − 2 B ' = B G C → = − 2 G C ' → ⇒ V G , − 2 C ' = C ⇒ V G , − 2 Δ A ' B ' C ' = Δ A B C
Phép vị tự tâm G tỉ số -1/2 biến A thành D; biến B thành E; biến C thành F ⇒ biến tam giác ABC thành tam giác DEF.
Đáp án B
Đáp án B
A’ = V G ; k ( A ) => − 2 G A ' → = G A → =>Tỉ số vị tự k = – 2
Đáp án B
G A → = − 2 G A ' → ⇒ V G , − 2 A ' = A G B → = − 2 G B ' → ⇒ V G , − 2 B ' = B G C → = − 2 G C ' → ⇒ V G , − 2 C ' = C ⇒ V G , − 2 Δ A ' B ' C ' = Δ A B C
Gọi A’ là điểm đối xứng với A qua tâm O.
chứng minh BHCA’ là hình bình hành, suy ra H, A', D thẳng hàng và DO là đường trung bình của tam giác AHA’ ⇒ D O → = - 1 / 2 A H → ⇒ phép vị tự tâm G tỉ số -1/2 biến A H → thành DO → .
Đáp án B
\(S_{ABC}=\frac{1}{2}AB.AC=6\)
Phép vị tự biến tam giác ABC thành A'B'C' với tỉ số đồng dạng \(\left|k\right|=\sqrt{2}\)
Do đó \(S_{A'B'C'}=k^2.S_{ABC}=12\)