K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 8 2020

\(\Leftrightarrow4cos^32x-3cos2x+3\left(2cos^22x-1\right)=0\)

\(\Leftrightarrow4cos^32x+6cos^22x-3cos2x-3=0\)

Bạn coi lại đề, pt này ko giải được ở chương trình phổ thông

NV
29 tháng 3 2022

\(y=\dfrac{\left(sin^2x+cos^2x\right)^2-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)-1}{\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x-1}\)

\(=\dfrac{1-3sin^2x.cos^2x-1}{1-2sin^2x.cos^2x-1}=\dfrac{3}{2}\) ko phụ thuộc x

Nên \(y'=0\) không phụ thuộc x

NV
14 tháng 8 2020

4.

\(\left\{{}\begin{matrix}cos^22x\ge0\\cos^23x\ge0\\cos^24x\ge0\end{matrix}\right.\) với mọi x

\(\Rightarrow cos^22x+cos^23x+cos^24x\ge0\) với mọi x

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}cos2x=0\\cos3x=0\\cos4x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cos2x=0\\cos3x=0\\2cos^22x-1=0\end{matrix}\right.\)

Nếu \(cos2x=0\Rightarrow2cos^22x-1=-1\ne0\)

\(\Rightarrow\) Pt đã cho vô nghiệm

NV
14 tháng 8 2020

3.

Ta có: \(\left\{{}\begin{matrix}cos^2x\ge0\\cos^22x\ge0\\cos^23x\ge0\end{matrix}\right.\) với mọi x

\(\Rightarrow cos^2x+cos^22x+cos^23x\ge0\) với mọi x

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}cosx=0\\cos2x=0\\cos3x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx=0\\2cos^2x-1=0\\cos3x=0\end{matrix}\right.\)

Pt vô nghiệm (do nghiệm của pt thứ nhất ko thể là nghiệm của pt thứ 2)

27 tháng 12 2016

Khó dữ vậy trời

27 tháng 12 2016

bài này khó quá chắc mình không giải được rồi

20 tháng 1 2017

lm jup mk di m.n

5 tháng 7 2016

giải ra (sinx - \(\sqrt{3}\)cosx)(sinx - cosx)

nếu sinx - \(\sqrt{3}\)cosx = 0

=> sinx = \(\sqrt{3}\)cosx

=> x = 60o

nếu sinx - cosx = 0

=> sinx = cosx

=> x=45o

9 tháng 11 2018

a) \(sin^6x+cos^6x+3sin^2x.cos^2x\)

\(=\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cox^2x+cos^4x\right)+3sin^2x.cos^2x\)

\(=sin^4x-sin^2x.cox^2x+cos^4x+3sin^2x.cos^2x\)

\(=sin^4x+2sin^2x.cox^2x+cos^4x=\left(sin^2x+cos^2x\right)^2=1\text{​​}\text{​}\)

b) \(sin^4x-cos^4x-\left(sinx+cosx\right)\left(sinx-cosx\right)\)

\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)-\left(sin^2x-cos^2x\right)\)

\(=1\left(sin^2x-cos^2x\right)-\left(sin^2x-cos^2x\right)=0\)

c) \(cos^2x+tan^2x.cos^2x\)

\(=cos^2x+\dfrac{sin^2x}{cos^2x}.cos^2x=sin^2x+cos^2x=1\)

NV
6 tháng 8 2020

ĐKXĐ: ...

\(\Leftrightarrow\frac{cos\left(x+\frac{5\pi}{6}\right)}{cos\left(2x-\frac{\pi}{6}\right)}+\frac{sin\left(2x-\frac{\pi}{6}\right)}{cos\left(2x-\frac{\pi}{6}\right)}=0\)

\(\Leftrightarrow cos\left(x+\frac{5\pi}{6}\right)+sin\left(2x-\frac{\pi}{6}\right)=0\)

\(\Leftrightarrow cos\left(x+\frac{5\pi}{6}\right)=-sin\left(2x-\frac{\pi}{6}\right)\)

\(\Leftrightarrow cos\left(x+\frac{5\pi}{6}\right)=cos\left(2x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=x+\frac{5\pi}{6}+k2\pi\\2x+\frac{\pi}{3}=-x-\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=-\frac{7\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)