Giải hệ PT:
\(\hept{\begin{cases}3\cdot\frac{x+y}{x-y}=-7\\\frac{5x-y}{y-x}=\frac{5}{3}\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải hệ PT:
\(\hept{\begin{cases}3\cdot\frac{x+y}{x-y}=-7\\\frac{5x-y}{y-x}=\frac{5}{3}\end{cases}}\)
Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!
Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ
\(\hept{\begin{cases}\frac{2}{x+y}+\frac{1}{x-y}=3\\\frac{1}{x+y}-\frac{3}{x-y}=1\end{cases}}\)
Đặt: \(u=\frac{1}{x+y};v=\frac{1}{x-y}\). Ta có:
\(\hept{\begin{cases}2u+v=3\\u-3v=1\end{cases}}\)
\(\hept{\begin{cases}2u+v=3\\2u-6v=2\end{cases}}\)<=> 7v=1 => \(v=\frac{1}{7};u=\frac{10}{7}\)
\(< =>\hept{\begin{cases}\frac{1}{x+y}=\frac{10}{7}\\\frac{1}{x-y}=\frac{1}{7}\end{cases}}\) <=> \(\hept{\begin{cases}10x+10y=7\\x-y=7\end{cases}}\)<=> 10(y+7)+10y=7
<=> 20y+70=7
=> \(y=-\frac{63}{20}\); \(x=\frac{77}{20}\)
a = \(\frac{1}{x+y}\)
b = \(\frac{1}{x-y}\)
=>
\(\hept{\begin{cases}2a+b=3\\a-3b=1\end{cases}}\)
<=>
\(\hept{\begin{cases}2a+b=3\\2a-6b=2\end{cases}}\)
Trừ 2 vế PT
=> 7b = 1
=> b = 1/7
=> a = 10/7
=>
\(\hept{\begin{cases}x+y=\frac{7}{10}\\x-y=7\end{cases}}\)
<=>
\(\hept{\begin{cases}x=\frac{77}{20}\\y=-\frac{63}{20}\end{cases}}\)
\(\left(x;y\right)=\left(x;\frac{5}{2}x\right)\)(với x\(\in\)R). Với điều kiện x\(\ne\)y ta có:
\(\hept{\begin{cases}\frac{3\left(x+y\right)}{x-y}=-7\\\frac{5x-y}{y-x}=\frac{5}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}3\left(x+y\right)=-7\left(x-y\right)\\3\left(5x-y\right)=5\left(y-x\right)\end{cases}\Leftrightarrow}\hept{\begin{cases}10x-4y=0\\20x-8y=0\end{cases}}}\)
Tập nghiệm của hệ phương trình này trùng lặp với tập nghiệm của phương trình 10x-4y=0
Vậy hệ có vô số nghiệm (x;y) tính theo công thức \(\hept{\begin{cases}x\in R\\y=\frac{5}{2}x\end{cases}}\)
Điều kiện x\(\ne\)y thỏa mãn khi và chỉ khi x\(\ne\)0