phân tích đa thức sau thành nhân tử 4x^2+2xy+4x+y+1=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 + 4x – 2xy – 4y + y2 = (x2-2xy+ y2) + (4x – 4y) → bạn Việt dùng phương pháp nhóm hạng tử
= (x - y)2 + 4(x – y) → bạn Việt dùng phương pháp dùng hằng đẳng thức và đặt nhân tử chung
= (x – y)(x – y + 4) → bạn Việt dùng phương pháp đặt nhân tử chung
\(a,2x^3y-2xy=2xy\left(x^2-1\right)=2xy\left(x-1\right)\left(x+1\right)\)
\(b,x^2-2x-4x^2-4x=-3x^2-2x-4x\\ =-3x^2-6x=-3\left(x^2+2x\right)=-3x\left(x+2\right)\)
Bài 2:
a: =>4x(x+5)=0
=>x=0 hoặc x=-5
b: =>(x+3)(x-3)=0
=>x=-3 hoặc x=3
s) = ( x2 - 2xy + y2 ) - ( 2xy )2 = ( x - y - 2xy )( x - y + 2xy )
u) sửa +4y thành -4y
= 4( x - y ) - x2( x - y ) = ( x - y )( 2 - x )( 2 + x )
a: \(=\left(x+2-y\right)\left(x+2+y\right)\)
c: \(=\left(x-y\right)^2\)
a)\(=3x\left(x+2y\right)\)
c)\(=\left(x-7\right)\left(x-1\right)\)
b)\(=x\left(x-2y\right)+3\left(x-2y\right)=\left(x+3\right)\left(x-2y\right)\)
d)\(=\left(2x\right)^2-y^2=\left(2x-y\right)\left(2x+y\right)\)
\(a,3x^2+6xy=3x\left(x+2y\right)\\ c,x^2-8x+7=\left(x^2-x\right)-\left(7x-7\right)=x\left(x-1\right)-7\left(x-1\right)=\left(x-1\right)\left(x-7\right)\\ b,x^2-2xy+3x-6y=\left(x^2+3x\right)-\left(2xy+6y\right)=x\left(x+3\right)-2y\left(x+3\right)=\left(x+3\right)\left(x-2y\right)\\ d,4x^2-y^2=\left(2x-y\right)\left(2x+y\right)\)
\(x^2+y^2-1-2xy\)
\(=\left(x-y\right)^2-1\)
\(=\left(x-y+1\right)\left(x-y-1\right)\)
\(a,=x\left(x^2-4x+4-z^2\right)=x\left[\left(x-2\right)^2-z^2\right]=x\left(x-z-2\right)\left(x+z-2\right)\\ b,=\left(x-y\right)^2-\left(z-5\right)^2=\left(x-y-z+5\right)\left(x-y+z-5\right)\)
\(x^3-4x^2+4x-xz^2=x\left(x^2-4x+4-z^2\right)\)
\(=x\left[\left(x-2\right)^2-z^2\right]=x\left(x-2-z\right)\left(x-2+z\right)\)
\(x^2-2xy+y^2-z^2+10z-25\)
\(=\left(x-y\right)^2-\left(z-5\right)^2\)
\(=\left(x-y+z-5\right)\left(x-y-z+5\right)\)
\(4x^2+2xy+4x+y+1\)
\(=\left(4x^2+2x\right)+\left(2xy+y\right)+\left(2x+1\right)\)
\(=2x\left(2x+1\right)+y\left(2x+1\right)+\left(2x+1\right)\)
\(=\left(2x+y+1\right)\left(2x+1\right)\)