Tìm hai chữ số tận cùng của \(A=6^{2005}\)
( Ưu tiên cách làm đồng dư )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A= 1944^2005
a) tìm dư khi chia A cho 7
b) tìm chữ số tận cùng của A
c) tìm 2 chữ số tận cùng của A
Ta có:
\(1980=20.99\)
=> \(A=17^{1980}=17^{20.99}=\left(17^{20}\right)^{99}\equiv1^{99}\equiv1\left(mod100\right)\)
Hai chữ số tận cùng của A là 01
khong vì
2+0=2 chữ số tiếp theo phải là 2 chứ không phải 0
0+0=0 chữ số tiếp theo là 0 chứ không phải 5
kết luận: DÃY TRÊN KHÔNG CÓ SỐ 2005
A=6^2005=(6^2004).6=(.....36).6=(.....16)
Em chưa học đồng dư nhưng chắc cũng làm giống bài trong link này . Anh xem thử ạ : https://h.vn/hoi-dap/question/386876.html