Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(1980=20.99\)
=> \(A=17^{1980}=17^{20.99}=\left(17^{20}\right)^{99}\equiv1^{99}\equiv1\left(mod100\right)\)
Hai chữ số tận cùng của A là 01
Ta có: \(5^{2018}=\left(5^4\right)^{504}.5^2\)
\(5^4\equiv625\left(mod1000\right)\)
\(\Rightarrow\left(5^4\right)^{2018}\equiv625^{2018}\left(mod1000\right)\)
\(\Rightarrow\left(5^4\right)^{2018}\equiv625\left(mod1000\right)\)(vì \(625^{2018}\)có tận cùng là 0625)
\(\Rightarrow\left(5^4\right)^{2018}.5^2\equiv625.5^2\left(mod1000\right)\)
\(\Rightarrow5^{2018}\equiv5625\left(mod1000\right)\)
Vậy: \(5^{2018}\)có tận cùng là 5625
2^10 = 1024 => 2^10 đồng dư 24 modun 100
=> 2^50 đồng dư 24^5 theo modun 100
mà 24^5 =7962624 đồng dư 24 theo modun 100
=> 2^50 đồng dư 24 modun 100
=> 2^100 đồng dư 24^2 =576 đồng dư 76 modun 100
vậy 2 chữ số tận cùng của 2^100 là 76 :-)
Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.
=>a)=...5
b)=...0.
c=...6
d=...1.
e)9^18=(9^2)^9=81^9=...1