K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)

⇔DA=DE(hai cạnh tương ứng)

nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: ΔABD=ΔEBD(cmt)

⇒BA=BE(hai cạnh tương ứng)

nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE(đpcm)

Xét ΔDEC vuông tại E có DC là cạnh đối diện với \(\widehat{DEC}=90^0\)

nên DC là cạnh huyền của ΔDEC vuông tại E

⇔DC là cạnh lớn nhất trong ΔDEC(Trong tam giác vuông, cạnh huyền là cạnh lớn nhất)

hay DE<DC(3)

mà DA=DE(cmt)(4)

nên từ (3) và (4) suy ra AD<DC

b) Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE(cmt)

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔADF=ΔEDC(cạnh góc vuông-góc nhọn kề)

⇒DF=DC(hai cạnh tương ứng)

hay D nằm trên đường trung trực của CF(Tính chất đường trung trực của một đoạn thẳng)(5)

Ta có: ΔADF=ΔEDC(cmt)

⇒AF=EC(hai cạnh tương ứng)

Ta có: BA+AF=BF(A nằm giữa hai điểm B và F)

BE+EC=BC(E nằm giữa hai điểm B và C)

mà BA=BE(cmt)

và AF=EC(cmt)

nên BF=BC

hay B nằm trên đường trung trực của CF(Tính chất đường trung trực của một đoạn thẳng)(6)

Từ (5) và (6) suy ra BD là đường trung trực của CF

hay BD⊥CF(đpcm)

Ta có: BD là đường trung trực của AE(cmt)

⇔BD⊥AE

Ta có: BD⊥AE(cmt)

BD⊥CF(cmt)

Do đó: AE//CF(Định lí 1 từ vuông góc tới song song)

20 tháng 8 2020

cảm ơn bạn rất nhiều nhưng phiền bạn có thể trả lời nốt 2 câu còn lại ko

1 tháng 5 2022

lag a ban 

1 tháng 5 2022

ko pk dùng hiệu ứng á

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: BA=BE

DA=DE

=>BD là trung trực của AE

c: Xét ΔBFC có

FE,CA là đường cao

FE cắt CA tại D

=>D là trực tâm

=>BD vuông góc FC

10 tháng 8 2015

Bài này không khó, cần thì mình giải cho bạn nhưng mà phần b bạn sai đề 

11 tháng 2 2020

BAEDFC

a) Ta xét t/g ABD vuông tại a và kẻ DE vuông góc với BC có:

=>BD sẽ là cạnh chung 

=>ADB=BDE (BD là tia phân giác của ABE)

=>T/gABD=t/gEDB (cạnh huyền-góc nhọn)

=>AB=EB (2 cạnh tương ứng) 

=>B thuộc đường trung trực của AE

=>AD=ED (2 cạnh tương ứng)

=>D thuộc đường trung trực của AE

=>BD là đường trung trực của AE

b) Xét t/g AFD và t/gECD ta có:

=>FAD=CED=90o

=>AD=ED(t/gABD=t/gEDB)

=>ADF=EDC (2 góc đối đỉnh)

=>T/gDAF=t/gEDC (c.g.c)

=>DF=DC ( 2 cạnh tương ứng)

c)

Vì t/gADF vuông tại A nên ta có:

AD<FD (quan hệ giữa các cạnh góc đối diện nhau trong 1 t/g vuông)

=>FD=CD

=>AD<DC

=> (đpcm).

26 tháng 6 2023

(a) Xét \(\Delta ABD,\Delta EBD:\left\{{}\begin{matrix}\hat{BAD}=\hat{BED}=90^o\left(gt\right)\\\text{BD chung}\\\hat{EBD}=\hat{ABD}\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta ABD=\Delta EBD\left(c.h-g.n\right)\Rightarrow\left\{{}\begin{matrix}BA=BE\\DA=DE\end{matrix}\right.\)

\(\Rightarrow BD\) là đường trung trực của \(AE\left(đpcm\right).\)

(b) Xét \(\Delta ADF,\Delta EDC:\left\{{}\begin{matrix}\hat{DAF}=\hat{DEC}=90^o\left(gt\right)\\AD=DE\left(cmt\right)\\\hat{ADF}=\hat{EDC}\left(\text{đối đỉnh}\right)\end{matrix}\right.\)

\(\Rightarrow\Delta ADF=\Delta EDC\left(g.c.g\right)\Rightarrow AF=CE.\)

Lại có: \(BA=BE\left(cmt\right)\Rightarrow BA+AF=BE+CE\Leftrightarrow BC=BF\)

\(\Rightarrow\Delta BCF\) cân tại \(B.\)

Ta cũng có: \(\left\{{}\begin{matrix}FE\perp BC\\CA\perp BF\\FE\cap CA=\left\{D\right\}\end{matrix}\right.\Rightarrow BD\) là đường cao thứ ba của \(\Delta BCF\Rightarrow BD\) vừa là đường cao, vừa là đường trung trực của \(CF\Rightarrow DC=DF\left(đpcm\right).\)

26 tháng 6 2023

1 tháng 5 2019

a, Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E ta có:

BD:cạnh chung; góc ABD= góc EBD(gt)

Do đó tam giác ABD=tam giác EBD(cạnh huyền - góc nhọn)

=> AB=EB; AD=ED(cặp cạnh tương ứng)

Vì AB=EB; AD=ED nên B là D nằm trên đường trung trực của AE

=> BD là đường trung trực của AE(đpcm)

b, Xét tam giác ADF và tam giác EDC ta có:

góc FAD=góc CED(=90độ);AD=ED(cmt); góc ADF=góc EDC(đối đỉnh)

Do đó tam giác ADF=tam giác EDC(g.c.g)

=> DF=DC(cặp cạnh tương ứng) (đpcm)

c, Xét tam giác DEC vuông tại E ta có:

DE<DC(do trong tam giác vuông cạnh huyền lớn nhất)

mà DE=DA=> DA<DC(đpcm)

d, Vì tam giác ADF=tam giác EDC(cm câu b)

=> AF=EC(cặp cạnh tương ứng)

Ta có: BF=BA+AF; BC=BE+EC

mà BA=BE;AF=EC(đã cm)

=> BF=BC

=> tam giác BCF cân tại B

mặc khác ta có: BA=BE(cm câu a)

=> tam giác ABE cân tại B

Xét tam giác BCF và tam giác ABE cân tại B ta có:

góc BAE=\(\dfrac{180^o-\text{góc}ABE}{2}\) ;góc BFC=\(\dfrac{180^o-\text{góc}FBC}{2}\)

=> góc BAE=góc BFC

=> AE//CF(do có 1 cặp góc bằng nhau ở vị trí đồng vị) (đpcm)

15 tháng 2 2021

san8iiiiii

 

26 tháng 3 2022

Hỏi đáp Toán
 a) 

ΔABD và ΔEBD có:
BA = BE (gt)
B1^=B2^ (BD là tia phân giác góc B)
BD là cạnh chung
⇒ΔABD=ΔEBD (c.g.c)

 

 BAD^=BED^ (hai góc tương ứng)
mà BAD^ =900
BED^ =900
 DE  BE

b) ΔABI và ΔEBI có:
BA = BE (gt)

12 tháng 12 2018

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Xét ΔABD và ΔEBD có:

BD chung

∠ABD = ∠EBD ( do BD ,là tia phân giác của góc ABC )

∠BAD = ∠BED = 90º

Suy ra: ΔABD = ΔEBD (cạnh huyền – góc nhọn) ⇒ BA = BE, DA = DE.

Do BA = BE nên B thuộc đường trung trực của AE.

Do DA = DE nên D thuộc đường trung trực của AE.

Do đó BD là đường trung trực của AE.