K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2020

Ta giả sử \(4\) và \(\sqrt{7}\) (*) là \(a\) và \(b\left(a,b>0\right)\) thì ta có điều hiển nhiên sau : \(a+b>a-b\)

Đặt căn ở hai bên ta được : \(\sqrt{a+b}>\sqrt{a-b}\)

Thế (*) vào ta được : \(\sqrt{4+\sqrt{7}}>\sqrt{4-\sqrt{7}}\)

Do VT > VP nên trừ ở VP đi một số thực dương sẽ không đổi chiều dấu 

Nên ta suy ra được \(\sqrt{4+\sqrt{7}}>\sqrt{4-\sqrt{7}}-\sqrt{2}\)

Hay viết cách khá là \(A>B\)

13 tháng 8 2020

A=Căn ( 4 + căn 7) ...... B= Căn ( 4 - Căn 7 ) - Căn 2
xét:
Nếu A < B
Thì Căn (4 + căn 7) > Căn (4 - Căn7) - Căn 2
Nếu Căn (4+ căn 7) = 0
Thì Căn (4+Căn7) - Căn 2 = 0
Mà B= Căn (4 - Căn 7) ( Tức nhỏ hơn Căn (4 + căn 7)
=> A > B

b: \(\dfrac{3}{\sqrt{7}-2}-\dfrac{4}{\sqrt{7}+\sqrt{3}}\)

\(=\sqrt{7}+2-\sqrt{7}+\sqrt{3}=2+\sqrt{3}\)

 

NV
14 tháng 8 2020

\(A=\sqrt{4+\sqrt{7}}=\frac{1}{\sqrt{2}}\sqrt{8+2\sqrt{7}}=\frac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}=\frac{\sqrt{7}+1}{\sqrt{2}}\)

\(B=\frac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}-\sqrt{2}=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}+2}{\sqrt{2}}=\frac{\sqrt{7}-1+2}{\sqrt{2}}=\frac{\sqrt{7}+1}{\sqrt{2}}\)

\(\Rightarrow A=B\)

a: \(\dfrac{\sqrt{81}}{\sqrt{16}}=\dfrac{9}{4}=\dfrac{36}{16}< \dfrac{81}{16}\)

b: \(\sqrt{16+25}=\sqrt{41}< 9=\sqrt{16}+\sqrt{25}\)

21 tháng 9 2020

Bài 2 : 

a) \(A=\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{7+2\sqrt{7}+1}-\sqrt{7}\)

\(=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{7}=\left|\sqrt{7}+1\right|-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)

b) \(B=\sqrt{7+4\sqrt{3}}-2\sqrt{3}=\sqrt{4+4\sqrt{3}+3}-2\sqrt{3}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-2\sqrt{3}=\left|2+\sqrt{3}\right|-2\sqrt{3}\)

\(=2+\sqrt{3}-2\sqrt{3}=2-\sqrt{3}\)

c) \(C=\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}\)

\(=\sqrt{13-2\sqrt{13}+1}+\sqrt{13+2\sqrt{13}+1}\)

\(=\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}\)

\(=\left|\sqrt{13}-1\right|+\left|\sqrt{13}+1\right|\)

\(=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)

d) \(D=\sqrt{22-2\sqrt{21}}+\sqrt{22+2\sqrt{21}}\)

\(=\sqrt{21-2\sqrt{21}+1}+\sqrt{21+2\sqrt{21}+1}\)

\(=\sqrt{\left(\sqrt{21}-1\right)^2}+\sqrt{\left(\sqrt{21}+1\right)^2}\)

\(=\left|\sqrt{21}-1\right|+\left|\sqrt{21}+1\right|\)

\(=\sqrt{21}-1+\sqrt{21}+1=2\sqrt{21}\)

21 tháng 9 2020

bạn j ơi bạn giải đúng k vậy

a) Ta có: \(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{12}{3-\sqrt{3}}\)

\(=\dfrac{2\left(\sqrt{3}+1\right)}{2}-\dfrac{3\left(2+\sqrt{3}\right)}{1}+\dfrac{12\left(3+\sqrt{3}\right)}{6}\)

\(=\sqrt{3}+1-6-3\sqrt{3}+2\left(3+\sqrt{3}\right)\)

\(=-2\sqrt{3}-5+6+2\sqrt{3}\)

=1

b) Ta có: \(\dfrac{1}{\sqrt{3}-\sqrt{2}}-\dfrac{2}{\sqrt{7}+\sqrt{5}}-\dfrac{3}{\sqrt{5}-\sqrt{2}}+\dfrac{4}{\sqrt{7}+\sqrt{3}}\)

\(=\sqrt{3}+\sqrt{2}-\sqrt{7}+\sqrt{5}-\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{3}\)

\(=\sqrt{2}-\sqrt{3}\)

15 tháng 11 2022

a: \(=9\sqrt{2}-4\sqrt{2}+4\sqrt{2}+9\sqrt{2}=18\sqrt{2}\)

b: \(=8\sqrt{3}-12\sqrt{3}+5\sqrt{3}+2\sqrt{3}=3\sqrt{3}\)

c: \(=2\sqrt{21}\)

 

a: \(x=2+\sqrt{3}+2-\sqrt{3}=4\)

=>x là số nguyên

b: \(y=2+\sqrt{3}-2+\sqrt{3}=2\sqrt{3}\)

=>y ko là số nguyên