Cho G=\(\frac{1}{2!}\)\(+\frac{1}{3!}\)\(+\)...\(+\frac{1}{200!}\).Chứng minh rằng G<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(G=\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
\(=\frac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2}{\sqrt{x}-1}\)
\(=\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2}{\sqrt{x}-1}\)
\(=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2}{\sqrt{x}-1}\)
\(=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2}{\sqrt{x}-1}\)
\(=\frac{2}{x+\sqrt{x}+1}\)
b) \(x+\sqrt{x}+1>0\Rightarrow G>0\)
\(x+\sqrt{x}+1>0+0+1=1\)
\(\Rightarrow\frac{2}{x+\sqrt{x}+1}< \frac{2}{1}=2\Rightarrow G< 2\)
\(\Rightarrow O< G< 2\)
Bài 1:
C = 1/101 + 1/102 + 1/103 + ... + 1/200
Có:
C < 1/101 + 1/101 + 1/101 + ... + 1/101
C < 100 . 1/101
C < 100/101
Mà 100/101 < 1
=> C < 1 (1)
Có:
C > 1/200 + 1/200 + 1/200 + ... + 1/200
C > 100 . 1/200
C > 1/2 (2)
Từ (1) và (2)
=> 1/2<C<1
Ủng hộ nha mk làm tiếp
\(N=\frac{1}{1!}+\frac{1}{2!}+...+\frac{1}{200!}<1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{199.200}\).
\(N=1+\frac{1}{2!}+...+\frac{1}{200!}<1+\frac{1}{2}-\frac{1}{200}\)
\(N=1+\frac{1}{2!}+...+\frac{1}{200!}<1+\frac{99}{200}<3\)
\(N=1+\frac{1}{2!}+...+\frac{1}{200!}<3\) (Đpcm)
Đ/s: ĐPCM
Tích nhá
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{1}{200^2}+\frac{1}{200^2}+...+\frac{1}{200^2}\left(100\text{số hạng}\right)\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{100}{200^2}< \frac{100}{200}=\frac{1}{2}\)
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{1}{2}\left(đpcm\right)\)
bài tớ sai rồi -_-' chưa lại hộ
\(=\frac{1}{2^2}.\left(\frac{1}{1}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)< \frac{1}{2^2}.\left(\frac{1}{1}+\frac{1}{1.2}+...+\frac{1}{99.100}\right)\)
\(=\frac{1}{2^2}.\left(1+1-\frac{1}{100}\right)=\frac{1}{4}.2-\frac{1}{400}=\frac{1}{2}-\frac{1}{400}< \frac{1}{2}\)
\(G< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{199.200}\)
\(G< \frac{1-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{200-199}{199.200}\)
\(G< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(G< 1-\frac{1}{200}< 1\)