K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2020

Đó là số 55555 vì :

55555 : 10 = 55555

55555 : 11111 = 5

Gọi bốn số liên tiếp là 5k+1;5k+2;5k+3;5k+4

Ta có: \(\left(5k+1\right)^2+\left(5k+2\right)^2+\left(5k+3\right)^2+\left(5k+4\right)^2\)

\(=25k^2+10k+1+25k^2+20k+4+25k^2+30k+9+25k^2+40k+16\)

\(=100k^2+100k+30\)

\(=10\left(10k^2+10k+3\right)⋮10\)

3 tháng 10 2021

neu 5 stn deu ko chia het cho 5 ma co so du khac nhau thi ta co : 

+  So chia 5 du 1 co dang 5k +1 

+   So chia 5 du 2 co dang 5k+2

+   So chia 5 du 3 co dang 5k +3 

+ So chia 5 du 4 co dang 5k+4

tong cac stn do la :

5k +1+ 5k+ 2 +5k+3 +5k+4 

= 5k .4 + ( 1+2+3+4)

= 5k.4+10

Vi : 5k ⋮ 5 

5k.4 ⋮ 5 và 10 ⋮5 

5k .4 +10 ⋮5 

Gọi bốn số liên tiếp không chia hết cho 5 lần lượt là 5k+1;5k+2;5k+3;5k+4

Ta có: \(\left(5k+1\right)^2+\left(5k+2\right)^2+\left(5k+3\right)^2+\left(5k+4\right)^2\)

\(=25k^2+10k+1+25k^2+20k+4+\left(5k+3\right)^2+\left(5k+4\right)^2\)

\(=50k^2+30k+5+25k^2+30k+9+25k^2+40k+16\)

\(=100k^2+100k+30\)

\(=10\left(10k^2+10k+3\right)⋮10\)

25 tháng 7 2016

\(1.a,10^n-1=100..0-1\)(n chữ số 0)=999..99(n chữ số 9)chia hết cho (vì có tổng bằng 9+9+..+9 chia hết cho 9)

\(b,10^n+8=100..0+8\)(n chữ số 0) = 1000...08.

Tổng các chữ số là: 1+0+0+...+8=9 chia hết cho 9.

2.

25 tháng 7 2016

Tạm thời mik chỉ bik lm bài 1 nên pn thông cảm nhé

1 a) pn thao khảo tại nhé do ở đây có bài giống nên mik gửi link luôn nhé!  http://olm.vn/hoi-dap/question/651590.html

b) Ta có: 10n+8= 1000000000000.......000+8

                               n chữ số 0

=> 10n+8= 10000000000........008

                      n chữ số 8

Ta có tổng các chữ số của 10n+8 bằng:  1+00000000.....000 ( Với n chữ số 0)+8= 1+0+8=9

Vì 9 chia hết cho 9  => 10n+8 chia hết cho 9

6 tháng 11 2023

3 chữ số là a; b; c

\(\overline{abc}+\overline{acb}+\overline{bac}+\overline{bca}+\overline{cab}+\overline{cba}=\)

\(=222a+222b+222c=222\left(a+b+c\right)=\)

\(=2.3.37\left(a+b+c\right)⋮37\)

 

 

13 tháng 8 2016

Tham khảo nha : Cho một số tự nhiên chia hết cho 11 gồm bốn chữ số khác nhau và khác 0. Chứng minh rằng có thể đổi vị trí các chữ số để đọc được 7 số mới chia hết...- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!

Chúc học tốt