Tính A : ( \(\frac{1}{1.2}\)+\(\frac{1}{3.4}\)+.....+ \(\frac{1}{99.100}\)) : ( \(\frac{1}{51.100}\)+ \(\frac{1}{52.98}\) + ..... + \(\frac{1}{75.76}\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(B=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(B< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)
\(B< \frac{50}{60}\Leftrightarrow B< \frac{5}{6}\)
= 1 . 1/2 + 1/2 . 1/3 + ... + 1/99 . 1/100
= 1 . 1/100
= 1/100
SAI thi mai len bao sai cho nao nha !!!!
đặt A = 1/1*2 + 1/3*4 + 1/5*6 + ... + 1/99*100
= 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/99 - 1/100
= (1 + 1/3 + 1/5 + ... + 1/99) - (1/2 + 1/4 + 1/6 + ... + 1/100)
= 1 + 1/2 + 1/3 + ... + 1/100 - 2(1/2 + 1/4 + 1/6 + .... + 1/100)
= 1 + 1/2 + 1/3 + ... + 1/100 - 1 - 1/2 - 13 - ... - 1/50
= 1/51 + 1/52 + 1/53 + ... + 1/100
thay vào ra E = 1
Biến đổi mẫu ta được:
\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(\Rightarrow E=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}=1\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..........+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}\)
\(=\frac{1}{1.2}+\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{1.2}+\left(\frac{1}{3}-\frac{1}{100}\right)\)
\(=\frac{1}{1.2}+\frac{97}{300}=\frac{247}{300}\)
\(\text{Vậy }\)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{247}{300}\)
Đặt B = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
Đặt C = \(\frac{1}{51.100}+\frac{1}{52.99}+...+\frac{1}{75.76}\)(sửa lại đề)
=> 151C = \(\frac{151}{51.100}+\frac{151}{52.99}+...+\frac{151}{75.76}\)
=> 151C =\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
=> C = \(\frac{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}}{151}\)
Khi A = B : C
= \(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right):\left(\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{151}\right)=151\)
Vậy A = 151