K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 8 2020

1.

\(cos^2x-sin^2x=cosx\Leftrightarrow cos2x=cosx\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=x+k2\pi\\2x=-x+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k2\pi\\x=\frac{k2\pi}{3}\end{matrix}\right.\)

Nghiệm âm lớn nhất là \(x=-\frac{2\pi}{3}\)

2.

ĐKXĐ: ...

\(\Leftrightarrow1+sinx+cosx+\frac{sinx}{cosx}=0\)

\(\Leftrightarrow1+cosx+sinx\left(\frac{cosx+1}{cosx}\right)=0\)

\(\Leftrightarrow\left(1+cosx\right)\left(1+\frac{sinx}{cosx}\right)=0\)

\(\Leftrightarrow\left(1+cosx\right)\left(1+tanx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\\tanx=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=-\frac{\pi}{4}+k\pi\end{matrix}\right.\)

Nghiệm dương bé nhất là \(x=\frac{3\pi}{4}\)

16 tháng 7 2021

\(\sqrt{3}cosx+2sin^2\left(\dfrac{x}{2}-\pi\right)=1\) 

\(\Leftrightarrow\sqrt{3}cosx+2sin^2\dfrac{x}{2}=1\)

\(\Leftrightarrow\sqrt{3}cosx-cosx=0\Leftrightarrow cosx=0\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\) ( k thuộc Z )

Vậy ... 

NV
16 tháng 7 2021

22.

Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cos^2x\)

\(3tan^2x+2tanx-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(\dfrac{1}{3}\right)+k\pi\end{matrix}\right.\)

Nghiệm dương nhỏ nhất của pt là: \(x=arctan\left(\dfrac{1}{3}\right)\)

NV
28 tháng 6 2021

1. 

ĐKXĐ: \(x\ne k\pi\)

\(\Leftrightarrow\left(2cos2x-1\right)\left(sinx-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\dfrac{1}{2}\\sinx=3>1\left(ktm\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{3}+k2\pi\\2x=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=-\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)

NV
28 tháng 6 2021

2. Bạn kiểm tra lại đề, pt này về cơ bản ko giải được.

3.

ĐKXĐ: \(x\ne\dfrac{k\pi}{2}\)

\(\dfrac{3\left(sinx+\dfrac{sinx}{cosx}\right)}{\dfrac{sinx}{cosx}-sinx}-2cosx=2\)

\(\Leftrightarrow\dfrac{3\left(1+cosx\right)}{1-cosx}+2\left(1+cosx\right)=0\)

\(\Leftrightarrow\left(1+cosx\right)\left(\dfrac{3}{1-cosx}+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\left(loại\right)\\cosx=\dfrac{5}{2}\left(loại\right)\end{matrix}\right.\)

Vậy pt đã cho vô nghiệm

26 tháng 8 2021

1, \(sin\left(x+\dfrac{\pi}{6}\right)+cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{6}}{2}\)

⇔  \(\dfrac{\sqrt{2}}{2}sin\left(x+\dfrac{\pi}{6}\right)+\dfrac{\sqrt{2}}{2}cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)

⇔ \(sin\left(x+\dfrac{\pi}{6}+\dfrac{\pi}{4}\right)=sin\dfrac{\pi}{4}\)

2, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx=1-\sqrt{3}\)

⇔ \(\dfrac{\left(\sqrt{3}-1\right)}{2\sqrt{2}}sinx+\dfrac{\left(\sqrt{3}+1\right)}{2\sqrt{2}}cosx=\dfrac{1-\sqrt{3}}{2\sqrt{2}}\)

⇔ sinx . si

27 tháng 8 2021

Giải hết dùm mik đc k câu 3 luôn

NV
29 tháng 8 2020

Nhận thấy \(cosx=0\) ko phải nghiệm, chia2 vế cho \(cos^3x\)

\(4tan^3x-\frac{tanx}{cos^2x}-\frac{1}{cos^2x}=0\)

\(\Leftrightarrow4tan^3x-tanx\left(1+tan^2x\right)-\left(1+tan^2x\right)=0\)

\(\Leftrightarrow3tan^3x-tan^2x-tanx-1=0\)

\(\Leftrightarrow\left(tanx-1\right)\left(3tan^2x+2tanx+1\right)=0\)

\(\Leftrightarrow tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\)

Hai nghiệm âm lớn nhất là \(x=\left\{-\frac{3\pi}{4};-\frac{7\pi}{4}\right\}\) có tổng là \(-\frac{5\pi}{2}\)

NV
29 tháng 9 2020

a/ \(m=0\) pt vô nghiêm

Với \(m\ne0\Rightarrow cosx=\frac{m+1}{m}\)

\(-1\le cosx\le1\Rightarrow-1\le\frac{m+1}{m}\le1\)

\(\Rightarrow m\le-\frac{1}{2}\)

b/ \(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)-cos4x=m\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x-cos4x=m\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x-\left(1-2sin^22x\right)=m\)

\(\Leftrightarrow\frac{5}{4}sin^22x=m\)

Do \(0\le\frac{5}{4}sin^22x\le\frac{5}{4}\Rightarrow0\le m\le\frac{5}{4}\)

c/ \(\Leftrightarrow1-\frac{3}{4}sin^22x=m\left(1-\frac{1}{4}sin^22x\right)\)

\(\Leftrightarrow\left(m-3\right)sin^22x=4m-4\)

- Với \(m=3\) pt vô nghiệm

- Với \(m\ne3\Rightarrow sin^22x=\frac{4m-4}{m-3}\)

Do \(0\le sin^22x\le1\Rightarrow0\le\frac{4m-4}{m-3}\le1\)

\(\Rightarrow\frac{1}{3}\le m\le1\)

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Đề lỗi font. Bạn cần chỉnh sửa lại bằng công thức toán để được hỗ trợ tốt hơn.

 

Đề bị lỗi rồi bạn ơi

12 tháng 6 2017

đọc o hiểu

NV
9 tháng 7 2021

Lý thuyết đồ thị:

Phương trình \(f\left(x\right)=m\) có nghiệm khi và chỉ khi \(f\left(x\right)_{min}\le m\le f\left(x\right)_{max}\)

Hoặc sử dụng điều kiện có nghiệm của pt lương giác bậc nhất (tùy bạn)

a.

\(\dfrac{\sqrt{3}}{2}\left(1-cos2x\right)+\dfrac{1}{2}sin2x=m\)

\(\Leftrightarrow\dfrac{1}{2}sin2x-\dfrac{\sqrt{3}}{2}cos2x+\dfrac{\sqrt{3}}{2}=m\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)+\dfrac{\sqrt{3}}{2}=m\)

\(\Rightarrow\) Pt có nghiệm khi và chỉ khi:

\(-1+\dfrac{\sqrt{3}}{2}\le m\le1+\dfrac{\sqrt{3}}{2}\)

NV
9 tháng 7 2021

b.

\(\Leftrightarrow\dfrac{3}{2}\left(1-cos2x\right)-sin2x+m=0\)

\(\Leftrightarrow sin2x+\dfrac{3}{2}cos2x-\dfrac{3}{2}=m\)

\(\Leftrightarrow\dfrac{\sqrt{13}}{2}\left(\dfrac{2}{\sqrt{13}}sin2x+\dfrac{3}{\sqrt{13}}cos2x\right)-\dfrac{3}{2}=m\)

Đặt \(\dfrac{2}{\sqrt{13}}=cosa\) với \(a\in\left(0;\dfrac{\pi}{2}\right)\)

\(\Rightarrow\dfrac{\sqrt{13}}{2}sin\left(2x+a\right)-\dfrac{3}{2}=m\)

Phương trình có nghiệm khi và chỉ khi:

\(\dfrac{-\sqrt{13}-3}{2}\le m\le\dfrac{\sqrt{13}-3}{2}\)