Tìm x,y,z biết: \(2x=3y=4z\) và \(x+y-z=21\)
Mọi người giúp mình với, mình cần gấp lắm!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 2x = 3y => 2x/3 = y
2x=4z => 2x/4 = z => x/2 = z
thay vào 2x - y + z = 15
2x - 2x/3 + x/2 =15
x(2-2/3+1/2) = 15
11x/6 = 15
11x= 90
x=90/11
y=60/11
z=45/11
Từ \(2x=3y=4z\) \(\Rightarrow\hept{\begin{cases}2x=3y\\3y=4z\end{cases}}\)
Từ \(2x=3y\)\(\Rightarrow\)\(\frac{x}{3}=\frac{y}{2}=\frac{x}{3}.\frac{1}{4}=\frac{y}{2}.\frac{1}{4}\)\(\Rightarrow\)\(\frac{x}{12}=\frac{y}{8}\)( 1 )
Từ \(3y=4z\)\(\Rightarrow\)\(\frac{y}{4}=\frac{z}{3}=\frac{y}{4}.\frac{1}{2}=\frac{z}{3}.\frac{1}{2}\)\(\Rightarrow\)\(\frac{y}{8}=\frac{z}{6}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\frac{x}{12}=\frac{y}{8}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{12}=\frac{y}{8}=\frac{z}{6}=\frac{2x}{24}=\frac{y}{8}=\frac{z}{6}=\frac{2x-y+z}{24-8+6}=\frac{15}{22}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{12}=\frac{15}{22}\\\frac{y}{8}=\frac{15}{22}\\\frac{z}{6}=\frac{15}{22}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}22x=180\\22y=120\\22z=90\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{90}{11}\\y=\frac{60}{11}\\z=\frac{45}{11}\end{cases}}\)
Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2+y^2-2z^2}{4+9-32}=\frac{76}{-19}=-4\)
=> \(\hept{\begin{cases}\frac{x^2}{4}=-4\\\frac{y^2}{9}=-4\\\frac{2z^2}{32}=-4\end{cases}}\) => \(\hept{\begin{cases}x^2=-4.4=-16\\y^2=-4.9=-36\\z^2=\left(-4.32\right):2=-64\end{cases}}\) => ko có giá trị x,y,z thõa mãn
Ta có: \(-2x=5y\) => \(\frac{x}{5}=\frac{y}{-2}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)
=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)
Vậy ..
\(\frac{x}{-3}=\frac{y}{-7}\Rightarrow\frac{2x}{-6}=\frac{4y}{-28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{-6}=\frac{4y}{-28}=\frac{2x+4y}{(-6)+(-28)}=\frac{68}{-34}=-2\)
Vậy : \(\hept{\begin{cases}\frac{x}{-3}=-2\\\frac{y}{-7}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}\)
Ta có: 2x + 3y + 5z - 119 = 0
=> 2x + 3y + 5z = 119
\(\frac{x+2}{3}=\frac{y+3}{5}=\frac{z-4}{7}\Leftrightarrow\frac{2x+4}{6}=\frac{3y+9}{15}=\frac{5z-20}{35}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{2x+4}{6}=\frac{3y+9}{15}=\frac{5z-20}{35}=\frac{2x+4+3y+9+5z-20}{6+15+35}=\frac{119+4+9-20}{56}=\frac{112}{56}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x+2}{3}=2\\\frac{y+3}{5}=2\\\frac{z-4}{7}=2\end{cases}\Rightarrow}\hept{\begin{cases}x+2=6\\y+3=10\\z-4=14\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\y=7\\z=18\end{cases}}\)
Vậy...
+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
Ta có: 5x=2y⇒2x=5y5x=2y⇒2x=5y(1)
3y=5z⇒5y=3z3y=5z⇒5y=3z (2)
Từ (1) và (2) ,đặt: 2x=5y=3z=k⇒⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩x=2k=2288y=5k=5288z=3k=32882x=5y=3z=k⇒{x=2k=2288y=5k=5288z=3k=3288 (3)
Từ (1) và (2) theo tính chất tỉ dãy số bằng nhau ,ta có:
2x=5y=3z=2−5+3x−y+z=02882x=5y=3z=2−5+3x−y+z=0288(4)
Suy ra k = 288. Dựa và (3) ta có: ⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩x=2k=2288y=5k=5288z=3k=3288{x=2k=2288y=5k=5288z=3k=3288
Vậy .....
t 27 tháng 7 2017 lúc 13:57
2x/3 =3y/4 =4z/5 ⇒60.2x/3 =60.3y/4 =60.4z/5 ⇒40.x=45.y=48.z
40.x = 45.y => x/45 = y/40 => x/9 = y/8 => x/18=y/16 [1]
45.y = 48.z => y/48 = z/45 => y/16 = z/15 [2]
Từ [1] và [2] => x/18 = y/16 = z/15 = [x+y+z]/[18+16+15] = 49/49 = 1
=> x= 18 ; y= 16 ; z= 15
Vậy x= 18 ; y= 16 ; z= 15
sử dụng tính chất của dãy tỉ số bằng nhau
Vô câu hỏi tương tự mà tham khảo
Tự làm đi nhóc cái này còn cơ bản nên suy nghĩ chút đi
Ta có: \(\frac{x}{10}=\frac{y}{6}=\frac{z}{3}\) => \(\frac{2x}{20}=\frac{3y}{18}=\frac{2z}{6}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{20}=\frac{3y}{18}=\frac{2z}{6}=\frac{2x+3y-2z}{20+18-6}=\frac{16}{32}=\frac{1}{2}\)
=> \(\hept{\begin{cases}\frac{x}{10}=\frac{1}{2}\\\frac{y}{6}=\frac{1}{2}\\\frac{z}{3}=\frac{1}{2}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{1}{2}.10=5\\y=\frac{1}{2}.6=3\\z=\frac{1}{2}.3=\frac{3}{2}\end{cases}}\)
Vậy ...
2x = 3y = 4z
=> \(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
=> \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y-z}{6+4-3}=\frac{21}{7}=3\)
=> \(\hept{\begin{cases}x=18\\y=12\\z=9\end{cases}}\)
Ta có: \(2x=3y=4z\) nên \(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\), suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y-z}{6+4-3}=\frac{21}{7}=3\)
\(\Rightarrow\hept{\begin{cases}x=3.6=18\\y=3.4=12\\z=3.3=9\end{cases}}\)
Vậy \(x=18\), \(y=12\) và \(z=9\).