Bài 1. Tìm ba số nguyên tố mà tích của chúng bằng ba lần tổng của chúng .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì a , b , c là 3 số nguyên tố khác nhau và có vai trò cùa a, b,c như nhau . Giả sử a > b > c => 3a > a + b + c
=> 3(a+b+c) < 9a => a.b.c < 9 a => b . c < 9 (a > 0) => b . c < 9 mà b và c là hai số nguyên tố
=> b = 3 và c = 2 và a = 5 . Thử lại 3(5+3+2)=5.3.2 (đúng)
Đáp số a = 5
b = 3
c = 2
Gọi 2 số đó là a, và b
Ta có: a-b= 3(a+b)
=> a-b=3a+3b
đến đây tịt
những số a; b thỏa mãn công thức tổng a = -2b ( vô số các cặp a; b thỏa mãn)
ví dụ a = 6, b = -3
a = 8 ; b = -4
......
.....
3. => 1 trong 2 số phải là 1(tích của 2 số tự nhiên khác 1 là hợp số)
=> số thứ 2 là 2
Gọi hai số nguyên cần tìm là a và b. Ta có:
3.(a + b) = a - b
⇔3a + 3b = a - b (Phân phối giữa phép nhân và phép cộng)
⇔ 3a – a = -3b – b (Quy tắc chuyển vế )
⇔ 2a = -4b
⇔ a = -2b
Có vô số cặp số nguyên thỏa mãn đề bài là a;b với b ∈ Z và a = -2b.
Ví dụ :
b = 1 thì a = -2
b = -1 thì a = 2
Kết luận : a = -2b với b ∈ Z thỏa mãn yêu cầu đề bài.
Gọi 2 số nguyên cần tìm là a và b, ta có:
3.(a + b) = a - b.
<=> 3a + 3b = a - b (Phân phối giữa phép nhân và phép cộng)
<=> 3a - a = -3b - b (Quy tắc chuyển vế)
<=> 2a = -4b
<=> a = -2b
Có vô số cặp số thỏa mãn yêu cầu của đề bài là a;b vs b thuộc Z và a = -2b
VD:
b = -1 thì a= 2
b = 1 thì a = -2
=> a = -2b vs b thuộc Z thỏa mãn yêu cầu của đề bài.
Gọi hai số nguyên cần tìm là a và b. Ta có:
3.(a + b) = a - b
\(\Leftrightarrow\)3a + 3b = a - b (Phân phối giữa phép nhân và phép cộng)
\(\Leftrightarrow\) 3a – a = -3b – b (Quy tắc chuyển vế )
\(\Leftrightarrow\) 2a = -4b
\(\Leftrightarrow\) a = -2b
Có vô số cặp số nguyên thỏa mãn đề bài là a;b với b \(\in\) Z và a = -2b.
Ví dụ :
b = 1 thì a = -2
b = -1 thì a = 2
Kết luận : a = -2b với b \(\in\) Z thỏa mãn yêu cầu đề bài.
1>
Gọi 3 số nguyên tố đó là a,b,c
Ta có: abc =5(a+b+c)
=> abc chia hết cho 5, do a,b,c nguyên tố
=> chỉ có trường hợp 1 trong 3 số =5, giả sử là a =5
=> bc = b+c +5 => (b-1)(c-1) = 6
{b-1 =1 => b=2; c-1 =6 => c=7
{b-1=2, c-1=3 => c=4 (loại)
Vậy 3 số nguyên tố đó là 2, 5, 7
2>
Với p=3 thì 2p+1 =7, 4p+1 = 13 là các số nguyên tố
Với p>3
* Do p nguyên tố nên ko chia hết cho 3
Nếu p = 3k +1 => 2p + 1 = 6k +3 chia hết cho 3
=> ko tồn tại số nguyên tố dạng 3k+1
Nếu p = 3k +2 => 4p + 1 = 12k +9 chia hết cho 3
=> ko tồn tại số nguyên tố dạng 3k+2
Vậy p=3 là duy nhất
-Gọi 3 số nguyên tố đó là a;b;c.
-Ta có: 5.(a+b+c)= abc.
=> 1/ab +1/bc +1/ac=1/5.
-Giả sử a>=b>=c (a,b,c vai trò như nhau).
=> ab>=ac>=bc.
=> 1/ab=< 1/ac=< 1/bc. => 3/bc>=1/ab +1/ac +1/bc= 1/5 =3/15.
=> bc=< 15.
-Đến đây thì bạn thử b.c vào thì thấy có b=5; c=2 thỏa mãn.
=> 5.(a+5+2)= a.5.2.
=> a=7.
Vậy (a;b;c)=(7;5;2) và các hoán vị.
''mà tích của chúng bằng ba lần tổng của chúng'' mà sao bạn Mai Anh lại có 5(a + b + c) ở kia thế kia ?
Đáng lẽ chỗ đó là : 3(a + b + c) chứ !