I. Rewrite these sentences using reduced form
1. It was the first car that I ever drove
…………………………………………………………………
2. He was the first man who said so rude words to me.
…………………………………………………………………
3. She was the first woman who was elected to paliament.
…………………………………………………………………
4. Harry isn’t the kind of person who gets on with everyone.
……………………………………………………………………
5. In the whole book there was only one chapter which interested me
…………………………………………………………………….
6. There is only one Greek island which I haven’t visited
…………………………………………………………………….
7. It’s the long winters here that really depress most people.
……………………………………………………………………
8. Do you like the person who sits next to you in class?
……………………………………………………………………
9. The letter that arrive this morning contained bad news.
……………………………………………………………………
10. There is no one who I would prefer to you as a co-driver.
……………………………………………………………………
11. This is the school which I used to go to
…………………………………………………………………….
12. The policeman who arrested her had recognised her car.
……………………………………………………………………
13. That’s the shop from which I got my shoes.
……………………………………………………………………
14. Can you move the chair on which you are sitting?
……………………………………………………………………
15. I don’t believe the story that she told us.
……………………………………………………………………
16. The person who finishes first will be the winner.
……………………………………………………………………
17. The last guests who were late didn’t have enough to eate.
……………………………………………………………………
18. The man who was arrested yesterday escaped again.
……………………………………………………………………
19. I lent you the book which was written by a friend of mine.
……………………………………………………………………
20. The book which was published last year became a best seller.
……………………………………………………………………
Đáp án:
Gọi $n_{Na_2CO_3};n_{H_2O}$ lần lượt a;b(mol)
Bảo toàn O ta có: \(4a+0,925.2=3a+b+1,075.2\Rightarrow a-b=0,3\)
Bảo toàn khối lượng ta có: \(117,6+0,925.32=106a+18b+1,075.44\Rightarrow138a+18b=99,9\)
Giải hệ ta được \(\left\{{}\begin{matrix}a=0,675\\b=0,375\end{matrix}\right.\)
Gọi CTTQ của ancol là $C_nH_{2n+2}O$
Suy ra $n_{ancol}=1,35(mol)$
Do đó $n=\frac{38}{27}$
Quy hỗn hợp về \(\left\{{}\begin{matrix}HCOOCH_3:x\left(mol\right)\\CH_2=CH-COOCH_3:y\left(mol\right)\\\left(COOCH_3\right)_2:z\left(mol\right)\\CH_2:t\left(mol\right)\end{matrix}\right.\)
Ta có: \(x+y+z=0,85\)
Bảo toàn nguyên tố K ta có: $n_{KOH}=1,35(mol)$
Bảo toàn khối lượng ta có: \(m_{hh}=50,9+117,6-1,35.56=92,9\left(g\right)\)
Suy ra \(60x+86y+118z+14t=92,9\)
Bảo toàn mol K trong muối ta có: \(x+y+2z=1,35\)
Bảo toàn C ta có: \(2x+4y+4z+t=1,075+0,675+\frac{38}{27}.1,35=3,65\)
Giải hệ ta được \(\left\{{}\begin{matrix}x=0,15\\y=0,2\\z=0,5\\t=0,55\end{matrix}\right.\)
Gộp nhóm ta thu được các chất là \(\left\{{}\begin{matrix}HCOOC_2H_5:0,15\left(mol\right)\\CH_2=CH-COOC_3H_7:0,2\left(mol\right)\\\left(COOCH_3\right)_2:0,5\left(mol\right)\end{matrix}\right.\)
Từ đó suy ra %m
Khi cho A td KOH thu được ancol đồng đẳng. => Các ancol là no đơn chức mạch hở.
Gọi CT các este: \(C_mH_{2m+1}COOC_{m'}H_{2m'+1};C_nH_{2n-1}COOC_{n'}H_{2n'+1};C_qH_{2q}\left(COOC_{q'}H_{2q'+1}\right)_2\)
TN2: Đốt hỗn hợp 3 muối.
Đặt \(n_{K_2CO_3}=x;n_{H_2O}=y\left(mol\right)\)
\(BTNT.K\Rightarrow n_{COOK^-}=2n_{K_2CO_3}=2x\left(mol\right)\\ BTNT.O\Rightarrow2n_{COOK^-}+2n_{O_2}=3n_{K_2CO_3}+2n_{CO_2}+n_{H_2O}\\ \Rightarrow x-y=0,3\\ BTKL\Rightarrow m_{M'}+m_{O_2}=m_{K_2CO_3}+m_{CO_2}+m_{H_2O}\\ \Rightarrow138x+18y=99,9\\ \Rightarrow\left\{{}\begin{matrix}x=0,675\\y=0,375\end{matrix}\right.\)
H2 muối gồm: \(C_mH_{2m+1}COOK\text{ }a\text{ }mol;C_nH_{2n-1}COOK\text{ }b\text{ }mol;C_qH_{2q}\left(COOK\right)_2\text{ }c\text{ }mol\)
\(\Rightarrow n_A=a+b+c=0,85\\ BTNT.C\Rightarrow\left(m+1\right)a+\left(n+1\right)b+\left(q+2\right)c=n_{K_2CO_3}+n_{CO_2}=1,75\\ \Rightarrow ma+nb+qc=0,4\\ BTNT.K\Rightarrow a+b+2c=1,35\\ BTNT.H\Rightarrow\left(2m+1\right)a+\left(2n-1\right)b+2qc=2n_{H_2O}=0,75\\ \Rightarrow a-b=-0,05\\ \Rightarrow\left\{{}\begin{matrix}a=0,15\\b=0,2\\c=0,5\end{matrix}\right.\\ \Rightarrow0,15m+0,2n+0,5q=0,4\)
Do \(m;q\ge0\Rightarrow n\le\frac{0,4}{0,2}=2\)
Mà \(n\ge2\Rightarrow n=2\Rightarrow m=q=0\)
TN1: Do các ancol đơn chức => \(n_{ancol}=n_{KOH}=2n_{K_2CO_3}=1,35\)
\(\Rightarrow\overline{M_{ancol}}=\frac{50,9}{1,35}=37,7\) => Có 1 ancol là \(CH_3OH\)
Nếu CH3OH là Cm'H2m'+1OH \(\Rightarrow n_{CH_3OH}=n_{HCOOK}=0,15\left(mol\right)\)
\(\Rightarrow m_{ancol}=0,15\cdot32+0,2\left(14n'+18\right)+\left(14q'+18\right)=50,9\\ \Rightarrow n'+5q'=8,75\left(L\right)\)
Nếu CH3OH là Cn'H2n'+1OH \(\Rightarrow n_{CH_3OH}=n_{C_2H_3COOK}=0,2\left(mol\right)\)
\(\Rightarrow m_{ancol}=0,15\left(14m'+18\right)+0,2\cdot32+\left(14q'+18\right)=50,9\\ \Rightarrow3n'+20q'=34\\ \Rightarrow q'=\frac{34-3n'}{20}\le\frac{34-3\cdot2}{20}=1,4\left(L\right)\)
Nếu CH3OH là Cq'H2q'+1OH \(\Rightarrow n_{CH_3OH}=2n_{\left(COOK\right)_2}=1\left(mol\right)\)
\(\Rightarrow m_{ancol}=0,15\left(14m'+18\right)+0,2\left(14n'+18\right)+0,5\cdot32=50,9\\ \Rightarrow3m'+4n'=18\\ \Rightarrow n'=\frac{18-3m'}{4}\le\frac{18-3\cdot2}{4}=3\\ \Rightarrow n'=3;m'=2\)
Các este là: \(HCOOC_2H_5;C_2H_3COOC_3H_7;COOCH_3-COOCH_3\)
CTCT:
\(HCOO-CH_2-CH_3\\ CH_2=CH-COO-CH_2-CH_2-CH_3\\ COOCH_3-COOCH_3\)
% KL: \(11,95\%HCOOC_2H_5;24,54\%C_2H_3COOC_3H_7;63,51\%COOCH_3-COOCH_3\)