giải phương trình \(x^4+\sqrt{x^2+2015}=2015\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét: \(\sqrt{1+n^2+\frac{n^2}{\left(n+1\right)^2}}=\sqrt{\frac{\left(n+1\right)^2+n^2\left(n+1\right)^2+n^2}{\left(n+1\right)^2}}\) (với \(n\inℕ\))
\(=\sqrt{\frac{n^2+2n+1+n^4+2n^3+n^2+n^2}{\left(n+1\right)^2}}\)
\(=\sqrt{\frac{n^4+n^2+1+2n^3+2n^2+2n}{\left(n+1\right)^2}}\)
\(=\sqrt{\frac{\left(n^2+n+1\right)^2}{\left(n+1\right)^2}}=\frac{n^2+n+1}{n+1}=n+\frac{1}{n+1}\)
Áp dụng vào ta tính được: \(\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}=2015+\frac{1}{2016}+\frac{2015}{2016}\)
\(=2015+1=2016\)
Khi đó: \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=2016\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2016\)
Đến đây xét tiếp các TH nhé, ez rồi:))
chẳng biết đúng ko,mới lớp 5
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
\(\sqrt{x^2}-\sqrt{2x}+\sqrt{1}+\sqrt{x^2}-\sqrt{4x}+\sqrt{4}=\sqrt{1}+\sqrt{2015^2}+\sqrt{\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
\(\sqrt{x^2}-\sqrt{6x}+3=1+2015+\frac{2015}{2016}+\frac{2015}{2016}\)
\(x-\sqrt{6x}=1+\frac{2015}{1+2016+2016}-3\)
\(x-\sqrt{6x}=2-\frac{2015}{4033}\)
\(x-\sqrt{6x}=\frac{6051}{4033}\)
\(\sqrt{x}+\sqrt{2015-y}=\sqrt{2015}\Leftrightarrow\left(\sqrt{x}+\sqrt{2015-y}\right)^2=2015\)
\(\Leftrightarrow x-y+2\sqrt{x}.\sqrt{2015-y}=0\Leftrightarrow4x.\left(2015-y\right)=\left(y-x\right)^2\)
\(\Leftrightarrow x^2+y^2-2xy=2015.4x-4xy\Leftrightarrow\left(x+y\right)^2=2015.4x\)
Tương tự : \(\sqrt{2015-x}+\sqrt{y}=\sqrt{2015}\Leftrightarrow\left(x+y\right)^2=2015.4y\)
Từ đó suy ra x = y
Tới đây bạn tự làm nhé :)
\(\sqrt{\left(x-2015\right)^{14}}+\sqrt{\left(x-2016\right)^{10}}=1
\)
\(\Leftrightarrow\left(x-2015\right)^7+\left(x-2016\right)^5=1\)
=> x=2015 hoặc x=2016
đoán thế
TH1: |x-2014|^2015=1 và |x-2015|^2014=0
=>(x-2014=1 hoặc x-2014=-1) và x-2015=0
=>x=2015
TH2: |x-2014|^2015=0và |x-2015|^2014=1
=>x-2014=0 và (x-2015=1 hoặc x-2015=-1)
=>x=2014
Đặt \(\sqrt{x-2013}=a\left(a>0\right)\)
\(\sqrt{y-2014}=b\left(b>0\right)\)
\(\sqrt{z-2015}=c\left(c>0\right)\)
Có \(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)
<=> \(\frac{a-1}{a^2}-\frac{1}{4}+\frac{b-1}{b^2}-\frac{1}{4}+\frac{c-1}{c^2}-\frac{1}{4}=0\)
<=> \(\frac{4a-4-a^2}{4.a^2}+\frac{4b-4-b^2}{4b^2}+\frac{4c-4+c^2}{4c^2}=0\)
<=>\(\frac{-\left(a^2-4a+4\right)}{4a^2}-\frac{b^2-4b+4}{4b^2}-\frac{c^2-4c+4}{4c^2}=0\)
<=> \(\frac{\left(a-2\right)^2}{4a^2}+\frac{\left(b-2\right)^2}{4b^2}+\frac{\left(c-2\right)^2}{4c^2}=0\).
Có \(\frac{\left(a-2\right)^2}{4a^2}\ge0\forall a>0\)
\(\frac{\left(b-2\right)^2}{4b^2}\ge0\forall b>0\)
\(\frac{\left(c-2\right)^2}{4c^2}\ge0\forall c>0\)
=> \(\frac{\left(a-2\right)^2}{4a^2}+\frac{\left(b-2\right)^2}{4b^2}+\frac{\left(c-2\right)^2}{4c^2}\ge0\) với moi a,b,c >0
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}a-2=0\\b-2=0\\c-2=0\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}\sqrt{x-2013}=2\\\sqrt{y-2014}=2\\\sqrt{z-2015}=2\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x-2013=4\\y-2014=4\\z-2015=4\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=2017\\y=2018\\z=2019\end{matrix}\right.\)(t/m)
Vậy \(\left(x,y,z\right)\in\left\{\left(2017,2018,2019\right)\right\}\)
pt <=> (x/2012 - 1) + (x+1/2013 - 1) + (x+2/2014 - 1) + (x+3/2015 - 1) + (x+4/2016 - 1) = 0
<=> x-2012/2012 + x-2012/2013 + x-2012/2014 + x-2012/2015 + x-2012/2016 = 0
<=> (x-2012).(1/2012+1/2013+1/2014+1/2015+1/2016) = 0
<=> x-2012 = 0 ( vì 1/2012+1/2013+1/2014+1/2015+1/2016 > 0 )
<=> x=2012
Vậy x=2012
Tk mk nha
Ta có :
\(\frac{x}{2012}+\frac{x+1}{2013}+\frac{x+2}{2014}+\frac{x+3}{2015}+\frac{x+4}{2016}=5\)
\(\Leftrightarrow\)\(\left(\frac{x}{2012}-1\right)+\left(\frac{x+1}{2013}-1\right)+\left(\frac{x+2}{2014}-1\right)+\left(\frac{x+3}{2015}-1\right)+\left(\frac{x+4}{2016}-1\right)=5-5\)
\(\Leftrightarrow\)\(\frac{x-2012}{2012}+\frac{x-2012}{2013}+\frac{x-2012}{2014}+\frac{x-2012}{2015}+\frac{x-2012}{2016}=0\)
\(\Leftrightarrow\)\(\left(x-2012\right)\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)=0\)
Vì \(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\ne0\)
\(\Rightarrow\)\(x-2012=0\)
\(\Rightarrow\)\(x=2012\)
Vậy \(x=2012\)
Chúc bạn học tốt ~