K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2021

Phương trình tương đương

\(\left[{}\begin{matrix}x=\dfrac{5\pi}{12}+k\pi\\x=-\dfrac{\pi}{4}+k\pi\end{matrix}\right.,k\in Z\)

Xét họ nghiệm \(x=\dfrac{5\pi}{12}+k\pi,k\in Z\)

Do \(-\dfrac{\pi}{2}< \dfrac{5\pi}{12}+k\pi< \dfrac{8\pi}{3}\) nên \(-\dfrac{11\pi}{12}< k\pi< \dfrac{9\pi}{4}\)

⇒ \(-\dfrac{11}{12}< k< \dfrac{9}{4}\). Mà k ∈ Z nên k ∈ {0 ; 1}

Vậy các nghiệm thỏa mãn phương trình là các phần tử của tập hợp :

S1 = \(\left\{\dfrac{5\pi}{12};\dfrac{17\pi}{12}\right\}\)

Xét họ nghiệm \(x=-\dfrac{\pi}{4}+k\pi\) với k ∈ Z. 

Do \(-\dfrac{\pi}{2}< \dfrac{-\pi}{4}+k\pi< \dfrac{8\pi}{3}\) nên \(-\dfrac{\pi}{4}< k\pi< \dfrac{35\pi}{12}\)

nên \(-\dfrac{1}{4}< k< \dfrac{35}{12}\). Mà k ∈ Z nên k∈ {0 ; 1 ; 2}

Vậy các nghiệm thỏa mãn phương trình là các phần tử của tập hợp 

S2 = \(\left\{-\dfrac{\pi}{4};\dfrac{3\pi}{4};\dfrac{7\pi}{4}\right\}\)

Vậy các nghiệm thỏa mãn phương trình là các phần tử của tập hợp

S = S1 \(\cup\) S2 = \(\left\{\dfrac{5\pi}{12};\dfrac{17\pi}{12};-\dfrac{\pi}{4};\dfrac{3\pi}{4};\dfrac{7\pi}{4}\right\}\)

a: \(\widehat{\left(SC;\left(ABCD\right)\right)}=\widehat{CS;CA}=\widehat{SCA}\)

Ta có: SA\(\perp\)(ABCD)

=>SA\(\perp\)AC

=>ΔSAC vuông tại A

Vì ABCD là hình vuông

nên \(AC=AD\cdot\sqrt{2}=a\sqrt{2}\)

Xét ΔSAC vuông tại A có \(tanSCA=\dfrac{SA}{AC}=\dfrac{a\sqrt{6}}{a\sqrt{2}}=\sqrt{3}\)

nên \(\widehat{SCA}=60^0\)

=>\(\widehat{SC;\left(ABCD\right)}=60^0\)

b: Ta có: BD\(\perp\)AC

BD\(\perp\)SA

SA,AC cùng thuộc mp(SAC)

Do đó: BD\(\perp\)(SAC)

\(\widehat{SB;\left(SAC\right)}=\widehat{SB;SD}=\widehat{BSD}\)

Vì ABCD là hình vuông

nên \(AC=BD=a\sqrt{2}\)

ΔSAD vuông tại A

=>\(SA^2+AD^2=SD^2\)

=>\(SD^2=\left(a\sqrt{6}\right)^2+a^2=7a^2\)

=>\(SD=a\sqrt{7}\)

ΔSAB vuông tại A

=>\(SA^2+AB^2=SB^2\)

=>\(SB=a\sqrt{7}\)

Xét ΔSBD có \(cosBSD=\dfrac{SB^2+SD^2-BD^2}{2\cdot SB\cdot SD}\)

\(=\dfrac{7a^2+7a^2-2a^2}{2\cdot a\sqrt{7}\cdot a\sqrt{7}}=\dfrac{6}{7}\)

=>\(sinBSD=\sqrt{1-\left(\dfrac{6}{7}\right)^2}=\dfrac{\sqrt{13}}{7}\)

=>\(\widehat{BSD}\simeq31^0\)

=>\(\widehat{SB;\left(SAC\right)}\simeq31^0\)

14 tháng 10 2021

\(\left(x-3\right)^{30}=\left(x-3\right)^{10}\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=4\end{matrix}\right.\)

14 tháng 10 2021

hơi tắt ạ

 

23 tháng 10 2021

different

composed

knowledge

width

widen

funny

hungry

fame

20 tháng 8 2022

Different,composed,knowledge,width,widen,funny,hungry,fame

 

 

 

 

 

 

12 tháng 3 2022

đk : x khác -3 

\(\left(x+3\right)^2=36\Leftrightarrow\left[{}\begin{matrix}x+3=6\\x+3=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-9\end{matrix}\right.\left(tm\right)\)

14 tháng 10 2021

b: Ta có: \(\left(\dfrac{3}{5}-\dfrac{2}{3}x\right)^3=\dfrac{-64}{125}\)

\(\Leftrightarrow\dfrac{3}{5}-\dfrac{2}{3}x=\dfrac{-4}{5}\)

\(\Leftrightarrow x\cdot\dfrac{2}{3}=\dfrac{3}{5}+\dfrac{4}{5}=\dfrac{7}{5}\)

hay \(x=\dfrac{7}{5}:\dfrac{2}{3}=\dfrac{21}{10}\)

26 tháng 3 2022

B

D

26 tháng 3 2022

nhanh thế :)))

CÂU TL LÀ Trường hợp nào "thầy ông nội" Lê Tùng Vân hết được tại ngoại, bị bắt giam?

16 tháng 12 2021

BỚT TRẢ LỜI THIẾU SUY NGHĨ !!

16 tháng 12 2021

a) Cl2 + 2NaOH --> NaClO + NaCl + H2O

Chất oxh: Cl2, chất khử: Cl2

Sự oxhCl0 -1e--> Cl+1x1
Sự khửCl0 +1e--> Cl-1x1

 

b) \(n_{Cl_2}=\dfrac{17,92}{22,4}=0,8\left(mol\right);n_{NaOH}=0,5.4=2\left(mol\right)\)

PTHH: Cl2 + 2NaOH --> NaClO + NaCl + H2O

_____0,8---->1,6--------->0,8---->0,8

=> \(\left\{{}\begin{matrix}C_{M\left(NaCl\right)}=\dfrac{0,8}{0,5}=1,6M\\C_{M\left(NaClO\right)}=\dfrac{0,8}{0,5}=1,6M\\C_{M\left(NaOH\right)}=\dfrac{2-1,6}{0,5}=0,8M\end{matrix}\right.\)