K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 6 2020

Bạn tham khảo:

Câu hỏi của Phạm Minh Quang - Toán lớp 9 | Học trực tuyến

18 tháng 5 2016

Ta có :

\(P=\frac{x^2}{2}+\frac{y^2}{2}+\frac{z^2}{2}+\frac{x^2+y^2+z^2}{xyz}\)  (1)

 Do : \(x^2+y^2+z^2\ge xy+yz+zx\), nên từ (1) ta có :

\(P\ge\frac{x^2}{2}+\frac{y^2}{2}+\frac{z^2}{2}+\frac{x^2+y^2+z^2}{xyz}\)

\(P\ge\left(\frac{x^2}{2}+\frac{1}{x}\right)+\left(\frac{y^2}{2}+\frac{1}{y}\right)+\left(\frac{z^2}{2}+\frac{1}{z}\right)\)   (2)

Xét hàm số \(f\left(t\right)=\frac{t^2}{2}+\frac{1}{t};t>0\)

 Ta có : \(f'\left(t\right)=t-\frac{1}{t^2}=\frac{t^3-1}{t^2}\)

Lập bảng biến thiên sau :

t f'(t) f(t) 0 1 - + 8 8 + + 3 2

Từ đó suy ra :

            \(f\left(t\right)\ge\frac{3}{2}\) với mọi \(t>0\)

Vì lẽ đó từ (2) ta có : \(P\ge3.\frac{3}{2}\) với mọi \(x,y,z>0\)

Mặt khác khi \(x=y=z\) thì \(P=\frac{9}{2}\) vậy Min \(P=\frac{9}{2}\)

14 tháng 6 2016

ucche

30 tháng 12 2018

\(B=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)

\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\)

\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\cdot\frac{x-1}{x}\cdot\frac{y-1}{y}\)

\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\cdot\frac{\left(-x\right)\left(-y\right)}{xy}\)

\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)

\(=1+\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=1+\frac{x+y}{xy}+\frac{1}{xy}\)

\(=1+\frac{2}{xy}\ge1+\frac{2}{\frac{\left(x+y\right)^2}{4}}=1+\frac{2}{\frac{1}{4}}=1+8=9\)

Vậy GTNN của B = 9 khi \(x=y=\frac{1}{2}\)

22 tháng 5 2017

x,y>0 => theo bdt AM-GM thì x+y >/ 2 căn (xy)=2 , x^2+y^2 >/ 2xy=2 (do xy=1)

P=(x+y+1)(x^2+y^2)+4/(x+y)

>/ 2(x+y+1)+4/(x+y)=[(x+y)+4/(x+y)]+(x+y+2)

x,y>0=>x+y>0 => theo bdt AM-GM thì P >/ 2.2+2+2=8 

minP=8