K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 6 2020

Từ giả thiết suy ra m và n đều lẻ, không mất tính tổng quát, giả sử \(m\ge n\)

Đặt \(2n+1=k.m\le2m+1\) (với \(k\ge1\) và k lẻ)

\(\Rightarrow k\le2+\frac{1}{m}\le3\Rightarrow k=\left\{1;3\right\}\)

TH1: \(k=1\Rightarrow2n+1=m\Rightarrow2m+1=4n+3⋮n\)

\(\Rightarrow3⋮n\Rightarrow\left[{}\begin{matrix}n=1\Rightarrow m=3\\n=3\Rightarrow m=7\end{matrix}\right.\) (thỏa mãn)

TH2: \(k=3\Rightarrow2n+1=3m\Rightarrow3\left(2m+1\right)=4n+5⋮n\)

\(\Rightarrow5⋮n\Rightarrow\left[{}\begin{matrix}n=1\Rightarrow m=1\\n=5\Rightarrow m=\varnothing\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
28 tháng 6 2020

Lời giải:

Thấy rẳng $2m+1,2n+1$ lẻ nên ước của chúng là $m,n$ cũng phải lẻ.

Nếu $m=1$ thì $n=1$ hoặc $n=3$

Nếu $n=1$ thì $m=1$ hoặc $m=3$

Nếu cả $m,n\geq 3$:

\(\left\{\begin{matrix} 2m+1\vdots n\\ 2n+1\vdots m\end{matrix}\right.\Rightarrow (2m+1)(2n+1)\vdots mn \)

\(\Leftrightarrow 4mn+2m+2n+1\vdots mn \)

\(\Leftrightarrow 2m+2n+1\vdots mn\)

Mà $2m+n+1$ nguyên dương nên $2m+2n+1\geq mn$

$\Leftrightarrow (m-2)(n-2)\leq 5$

$m,n$ lẻ $m-2,n-2$ lẻ. Do đó $(m-2)(n-2)$ lẻ. Mà $m,n\geq 3$ nên $(m-2)(n-2)\geq 1$

Do đó $(m-2)(n-2)=1;3$. Đến đây là dạng phương trình tích đơn giản.

Tóm lại $(m,n)=(1,1); (1,3); (3;1); (7;3); (3;7)$

7 tháng 3 2021

Do vai trò bình đẳng của x, y, z trong phương trình,

trước hết ta xét x ≤ y ≤ z.

Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z

=> xyz = x + y + z ≤ 3z => xy ≤ 3=> xy thuộc {1 ; 2 ; 3}.

Nếu xy = 1 => x = y = 1,

thay vào (2) ta có : 2 + z = z, vô lí.

Nếu xy = 2, do x ≤ y nên x = 1 và y = 2,

thay vào (2), => z = 3.Nếu xy = 3,

do x ≤ y nên x = 1 và y = 3,

thay vào (2), => z = 2.

Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3)

7 tháng 3 2021

phần kia thì chịu :)

29 tháng 6 2023

Để tìm tất cả các số nguyên dương k thỏa mãn điều kiện đã cho, ta sẽ giải phương trình theo n.

2n + 11 chia hết cho 2k - 1 có nghĩa là tồn tại một số nguyên dương m sao cho:
2n + 11 = (2k - 1)m

Chuyển biểu thức trên về dạng phương trình tuyến tính:
2n - (2k - 1)m = -11

Ta nhận thấy rằng nếu ta chọn một số nguyên dương nào đó, ta có thể tìm được một số nguyên dương k tương ứng để phương trình trên có nghiệm. Do đó, ta chỉ cần tìm tất cả các số nguyên dương n thỏa mãn phương trình trên.

Để giải phương trình này, ta có thể sử dụng thuật toán Euclid mở rộng (Extended Euclidean Algorithm). Tuy nhiên, trong trường hợp này, ta có thể tìm được một số giá trị n và k thỏa mãn phương trình bằng cách thử từng giá trị của n và tính giá trị tương ứng của k.

Dưới đây là một số cặp giá trị n và k thỏa mãn phương trình đã cho:
(n, k) = (3, 2), (7, 3), (11, 4), (15, 5), (19, 6), …

Từ đó, ta có thể thấy rằng có vô số giá trị n và k thỏa mãn phương trình đã cho.

  
29 tháng 6 2023

nhưng mà đề bài là 2n+11 chia hết cho 2k-1 chứ không phải 2n+11 chia hết cho 2k-1.

 

17 tháng 12 2015

a; Đặt A= \(a^{2017}+a^{2015}+1\)

\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)

\(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)

\(\Rightarrow A\) chia hết cho \(a^2+a+1\)

do \(a^2+a+1\) > 1 (dễ cm đc)

mà A là số nguyên tố

\(\Rightarrow A=a^2+a+1\)

hay \(a^{2017}+a^{2015}+1=a^2+a+1\)

\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)

\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)

do a dương => a>0 => a-1=0=> a=1(t/m)

Kết Luận:...

chỗ nào bạn chưa hiểu cứ nói cho mình nha :3