K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2022

lag a ban 

1 tháng 5 2022

ko pk dùng hiệu ứng á

a: XétΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

Suy ra: BA=BE và DA=DE
hay BD là đường trung trực của AE

b: Ta có: AD=DE

mà DE<DC

nên AD<CD

30 tháng 4 2019

bai nay kho qua minh ko giai duoc

                   bài nay dễ lắm mỗi tội hơi dài thôi

7 tháng 8 2017

b. Ta có AB = BE ⇒ B nằm trên đường trung trực của AE (0.5 điểm)

Do ∆ABD = ∆EBD nên AD = DE (hai cạnh tương ứng)

⇒ D nằm trên đường trung trực của AE

Vậy BD là đường trung trực của AE (0.5 điểm)

Bạn tự vẽ hình nha!!!

a.

 Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

BD là cạnh chung

ABD = EBD (BD là tia phân giác của ABE)

=> Tam gác ABD = Tam giác EBD (cạnh huyền - góc nhọn)

=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE

=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE

=> BD là đường trung trực của AE

b.

Xét tam giác ADF và tam giác EDC có:

DAF = DEC ( = 90 )

AD = ED (tam giác ABD = tam giác EBD)

ADF = EDC (2 góc đối đỉnh)

=> Tam giác ADF = Tam giác EDC (g.c.g)

=> DF = DC (2 cạnh tương ứng)

c.

Tam giác ADF vuông tại A có:

AD < DF (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà DF = DC (theo câu b)

=> AD < DC

d.

AB = EB (tam giác ABD = tam giác EBD)

=> Tam giác BAE cân tại B

=> \(BAE=\frac{180-ABC}{2}\)

BF = AB + AF

BC = EB + EC

mà AB = EB (tam giác ABD = tam giác EBD)

      AF = EC (tam giác ADF = tam giác EDC)

=> BF = BC 

=> Tam giác BFC cân tại B

=> \(BFC=\frac{180-FBC}{2}\)

mà \(BAE=\frac{180-ABC}{2}\) (chứng minh trên)

=> BFC = BAE

mà 2 góc này ở vị trí đồng vị 

=> AE // CF

1 tháng 5 2016

mmnk,khj,

17 tháng 5 2018

6 tháng 5

ccccc