K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2020

Tránh trả lời lại.

11 tháng 8 2020

À không mk có 2 nick,nick này là mk mới lập vì nick kia mk bị mất ạ=))hihi

2 tháng 1 2017

Cách 1. Áp dụng BĐT AM-GM : 

\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{\left(a+b+c+d\right)^2}{2\left(a+b+c+d\right)}\)

\(\Rightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}=\frac{1}{2}\)

Cách 2. Áp dụng BĐT Cauchy : \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{a^2}{a+b}.\frac{a+b}{4}}=a\)

Tương tự : \(\frac{b^2}{b+c}+\frac{b+c}{4}\ge b\) , \(\frac{c^2}{c+d}+\frac{c+d}{4}\ge c\)\(\frac{d^2}{d+a}+\frac{d+a}{4}\ge d\)

Cộng theo vế : \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}+\frac{1}{4}.2.\left(a+b+c+d\right)\ge a+b+c+d\)

\(\Leftrightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}=\frac{1}{2}\)

5 tháng 10 2019

@Nguyễn Việt Lâm

5 tháng 10 2019

@Vũ Minh Tuấn

7 tháng 10 2017

Lần sau viết rõ yêu cầu đề nhá!

CMR: \(\frac{a}{b+c+1}=\frac{b}{a+c+1}=\frac{c}{a+b+1}=a+b+c\)

Ta có: 3 số a , b , c.Theo tính chất tỉ dãy số bằng nhau ta có:

\(\frac{a}{b+c+1}=\frac{b}{a+c+1}=\frac{c}{a+b+1}=a+b+c=1\)

\(\Rightarrow a=b=c=1-3=\left(-2\right)\)

Dấu = xảy ra khi \(a=b=c=\left(-2\right)\)

Ps: Chả biết đúng hay không , nếu sai xin bạn đừng dis, hổm đến giờ mk bị nhiều cái dis lắm rồi!

7 tháng 10 2017

Sửa đề:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b+c+1}=\dfrac{b}{a+c+1}=\dfrac{c}{a+b-2}=\dfrac{a+b+c}{b+c+1+a+c+1+a+b+-2}=\dfrac{a+b+c}{\left(b+c+a+c+a+b\right)+\left(1+1-2\right)}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)

Tương đương với:

\(\left\{{}\begin{matrix}\dfrac{a}{b+c+1}=\dfrac{1}{2}\\\dfrac{b}{a+c+1}=\dfrac{1}{2}\\\dfrac{c}{a+c-2}=\dfrac{1}{2}\\a+b+c=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b+c+1=2a\\a+c+1=2b\\a+c-2=2c\\a+b+c=\dfrac{1}{2}\end{matrix}\right.\)

\(\circledast\) Từ \(a+b+c=\dfrac{1}{2}\Leftrightarrow b+c=\dfrac{1}{2}-a\)

Nên \(\dfrac{1}{2}-a+1=2a\)(tự tìm a nhé dễ lắm)

\(\circledast\) Từ \(a+b+c=\dfrac{1}{2}\Leftrightarrow a+c=\dfrac{1}{2}-b\)

Nên \(\dfrac{1}{2}-b+1=2b\)(tự tính b)

\(\circledast\) Từ \(a+b+c=\dfrac{1}{2}\Leftrightarrow a+b=\dfrac{1}{2}-c\)

Nên\(\dfrac{1}{2}-c-2=2c\)(tự tính c)

Vậy...

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

Lời giải:

a)

\(\frac{\sin a}{1+\cos a}+\cot a=\frac{\sin a}{1+\cos a}+\frac{\cos a}{\sin a}=\frac{\sin ^2a+\cos^2a+\cos a}{\sin a(1+\cos a)}\)

\(=\frac{1+\cos a}{\sin a(1+\cos a)}=\frac{1}{\sin a}\) (đpcm)

b)

\(\frac{1}{\cos a}-\frac{\cos a}{1+\sin a}=\frac{1+\sin a-\cos ^2a}{\cos a(1+\sin a)}=\frac{(1-\cos ^2a)+\sin a}{\cos a(\sin a+1)}\)

\(=\frac{\sin^2a+\sin a}{\cos a(\sin a+1)}=\frac{\sin a(\sin a+1)}{\cos a(\sin a+1)}=\frac{\sin a}{\cos a}=\tan a\) (đpcm)

c)

\(\frac{\tan a-\sin a}{\sin ^3a}=\frac{\frac{\sin a}{\cos a}-\sin a}{\sin ^3a}=\frac{\frac{1}{\cos a}-1}{\sin ^2a}=\frac{1-\cos a}{\cos a\sin ^2a}=\frac{1-\cos a}{\cos a(1-\cos ^2a)}=\frac{1}{\cos a(1+\cos a)}\)

d)

\(\frac{\sin a+\cos a-1}{\sin a-\cos a+1}=\frac{(\sin a+\cos a-1)(\sin a+\cos a+1)}{(\sin a-\cos a+1)(\sin a+\cos a+1)}=\frac{(\sin a+\cos a)^2-1}{(\sin a+1)^2-\cos ^2a}\)

\(=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\sin ^2a+1+2\sin a-\cos ^2a}=\frac{1+2\sin a\cos a-1}{\sin ^2a+1+2\sin a-(1-\sin ^2a)}\)

\(=\frac{2\sin a\cos a}{2\sin ^2a+2\sin a}=\frac{2\sin a\cos a}{2\sin a(\sin a+1)}=\frac{\cos a}{1+\sin a}\) (đpcm)

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

Mấu chốt trong các bài này là việc sử dụng công thức $\sin ^2a+\cos ^2a=1$

29 tháng 6 2019

\(B=\Sigma\frac{ab}{a^2+b^2-c^2}\)

\(B=\frac{ab}{a^2+\left(b-c\right)\left(b+c\right)}+\frac{bc}{b^2+\left(c-a\right)\left(c+a\right)}+\frac{ac}{c^2+\left(a-b\right)\left(a+b\right)}\)

\(B=\frac{ab}{a^2-a\left(b-c\right)}+\frac{bc}{b^2-b\left(c-a\right)}+\frac{ac}{c^2-c\left(a-b\right)}\)

\(B=\frac{ab}{a\left(a-b+c\right)}+\frac{bc}{b\left(b-c+a\right)}+\frac{ac}{c\left(c-a+b\right)}\)

\(B=\frac{b}{a+b+c-2b}+\frac{c}{a+b+c-2c}+\frac{a}{a+b+c-2a}\)

\(B=\frac{-b}{2b}+\frac{-c}{2c}+\frac{-a}{2a}\)

\(B=\frac{-1}{2}+\frac{-1}{2}+\frac{-1}{2}\)

\(B=\frac{-3}{2}\)