Cho tam giác ABC vuông tại A, AB=12cm, AC=18cm. Vẽ đường phân giác góc A cắt BC tại D
a, Tính độ dài DB, DC?
b, Tính độ dài AD?
Giúp mình nhaa mai mình kt 1 tiết rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BC^2 = AC^2 + BA^2
= 8^2 + 6^2
= 64+36= 100
BC^2 = \(\sqrt{100}\)
⇒BC = 10
CHU VI HÌNH TAM GIÁC LÀ: 10+8+6=24(cm)
xét tam giác ΔABD vs ΔHBD cs
góc A = góc H = 90 độ
AD cạnh chung
góc B1 = góc B2
nên ΔABD = ΔHBD ( ch-gn)
xét ΔHDC cs góc H = 90 độ
⇒DH < DC ( do DC là cạnh huyền )
mà DH = DA ( ΔABD = ΔHBD )
nên DC > DA
a: BC=5cm
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA∼ΔHAC
c: Ta có: ΔHBA∼ΔHAC
nên HB/HA=HA/HC
hay \(HA^2=HB\cdot HC\)
Lời giải:
a)
Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{30^2+40^2}=50$ (cm)
$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{30.40}{50}=24$ (cm)
$BH=\sqrt{AB^2-AH^2}=\sqrt{30^2-24^2}=18$ (cm)
b)
Theo tính chất tia phân giác:
$\frac{AD}{DC}=\frac{AB}{BC}=\frac{30}{50}=\frac{3}{5}$
$\Rightarrow \frac{AD}{AC}=\frac{3}{8}$
$\Leftrightarrow \frac{AD}{40}=\frac{3}{8}$
$\Rightarrow AD=15$ (cm)
$DC=AC-AD=40-15=25$ (cm)