K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=5cm

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA∼ΔHAC

c: Ta có: ΔHBA∼ΔHAC

nên HB/HA=HA/HC

hay \(HA^2=HB\cdot HC\)

AH
Akai Haruma
Giáo viên
15 tháng 6 2021

Lời giải:

a) 

Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{30^2+40^2}=50$ (cm)

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{30.40}{50}=24$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{30^2-24^2}=18$ (cm)

b) 

Theo tính chất tia phân giác:

$\frac{AD}{DC}=\frac{AB}{BC}=\frac{30}{50}=\frac{3}{5}$

$\Rightarrow \frac{AD}{AC}=\frac{3}{8}$

$\Leftrightarrow \frac{AD}{40}=\frac{3}{8}$

$\Rightarrow AD=15$ (cm)

$DC=AC-AD=40-15=25$ (cm)

 

AH
Akai Haruma
Giáo viên
15 tháng 6 2021

Hình vẽ:

11 tháng 2 2022

undefined

a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có

góc C chung

Do đó: ΔHAC\(\sim\)ΔABC

b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

\(HC=\dfrac{AC^2}{BC}=\dfrac{16^2}{20}=12.8\left(cm\right)\)