cho 3 số thực x,y,z>0 thỏa mãn \(x+y+z\ge6\)
Tìm GTNN của \(P=\frac{x^3+y^3}{x^2+y^2}+\frac{y^3+z^3}{y^2+z^2}+\frac{z^3+x^3}{z^2+x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
\(\frac{x+1}{1+y^2}=\frac{\left(x+1\right)\left(y^2+1\right)-y^2\left(x+1\right)}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{1+y^2}\ge x+1-\frac{xy+y}{2}\)
Tương tự ta có:
\(\frac{y+1}{z^2+1}\ge y+1-\frac{yz+z}{2}\)
\(\frac{z+1}{1+x^2}\ge z+1-\frac{zx+x}{2}\)
Cộng vế theo vế ta có:
\(Q\ge3+\left(x+y+z\right)-\frac{x+y+z+xy+yz+zx}{2}\)
\(=3+\frac{x+y+z-xy-yz-zx}{2}\)
Có BĐT phụ sau:
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) ( tự cm )
\(\Rightarrow xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=3\)
Khi đó \(P\ge3\)
Dấu "=" xảy ra tại \(x=y=z=1\)
\(P=\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}\)
\(\ge3\sqrt[3]{\frac{1}{xyz\left(x+1\right)\left(y+1\right)\left(z+1\right)}}\)
Mà theo BĐT AM - GM ta có tiếp:
\(xyz\le\left(\frac{x+y+z}{3}\right)^3=1\)
\(\left(x+1\right)\left(y+1\right)\left(z+1\right)\le\left(\frac{x+y+z+3}{3}\right)^3=8\)
\(\Rightarrow P\le\frac{3}{2}\)
Đẳng thức xảy ra tại x=y=z=1
Vậy..................
\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=1.\)
Dấu "=" xảy ra khi:
\(x=y=z=\frac{2}{3}\)
Áp dụng BĐT Cô-si cho 2 số dương \(\frac{x^2}{y+z}\)và \(\frac{y+z}{4}\), ta được :
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=2.\frac{x}{2}=x\) ( 1 )
Tương tự : \(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\) ( 2 )
\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\) ( 3 )
Cộng ( 1 ) , ( 2 ) và ( 3 ) , ta được :
\(\left(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\right)+\frac{x+y+z}{2}\ge x+y+z\)
\(P\ge\left(x+y+z\right)-\frac{x+y+z}{2}=1\)
Dấu " = " xảy ra \(\Leftrightarrow\)x = y = z = \(\frac{2}{3}\)
Vậy GTNN của P là 1 \(\Leftrightarrow\)x = y = z = \(\frac{2}{3}\)
Áp dụng BĐT Bunhiacopski ta có:
\(\frac{x}{x^3+y^2+z}=\frac{x\left(\frac{1}{x}+1+z\right)}{\left(x^3+y^2+z\right)\left(\frac{1}{x}+1+z\right)}\le\frac{1+x+xz}{\left(x+y+z\right)^2}=\frac{1+x+xz}{9}\)
Tương tự rồi cộng lại ta được:
\(T\le\frac{3+x+y+z+xy+yz+zx}{9}=\frac{6+xy+yz+zx}{9}\le\frac{6+\frac{\left(x+y+z\right)^2}{3}}{9}=1\)
Dấu "=" xảy ra tại \(x=y=z=1\)
Với \(a;b>0\) ta luôn có: \(\frac{a^3+b^3}{a^2+b^2}\ge\frac{a+b}{2}\)
Thật vậy, BĐT tương đương:
\(2\left(a^3+b^3\right)\ge\left(a^2+b^2\right)\left(a+b\right)\)
\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)
Áp dụng vào bài toán:
\(P=\frac{x^3+y^3}{x^2+y^2}+\frac{y^3+z^3}{y^2+z^2}+\frac{z^3+x^3}{z^2+x^2}\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z\ge6\)
\(\Rightarrow P_{min}=6\) khi \(x=y=z=2\)
Thanks bạn nha.