K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔBHA vuông tại H và ΔBHE vuông tại H có 

BH chung

\(\widehat{ABH}=\widehat{EBH}\)(BH là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔBHA=ΔBHE(cạnh góc vuông-góc nhọn kề)

b) Ta có: ΔBHA=ΔBHE(cmt)

nên BA=BE(hai cạnh tương ứng)

Xét ΔBAD và ΔBED có 

BA=BE(cmt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔBAD=ΔBED(c-g-c)

Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay DE\(\perp\)BC(đpcm)

a) Sửa đề: Trên HC lấy E sao cho HE=HB và c/m ΔBHA=ΔEHA

Xét ΔBHA vuông tại H và ΔEHA vuông tại H có 

AH chung

BH=EH(gt)

Do đó: ΔBHA=ΔEHA(hai cạnh góc vuông)

KO SỬA ĐỀ ĐÂU BẠN ƠI

 

15 tháng 12 2017

Bạn xem lời giải bài tương tự tại đường link dưới nhé:

Câu hỏi của Nguyễn Ngọc Vy - Toán lớp 7 - Học toán với OnlineMath

28 tháng 4 2017

A B C D H E K

aXét 2 tam giác BHA và tam giác BHE có:

H1=H2=90

B1=B2(phân giác góc B)

BH chung

=> tam giác BHA = tam giác BHE(g.c.g)

b Chứng minh AK // DE mà 

MÀ AK vuông góc vs BC

=> ED vuông góc vs BC

28 tháng 4 2017

câu c và d bạn

27 tháng 3 2020

a, Xét △BHA vuông tại H và △BHE vuông tại H

Có: BH là cạnh chung

       ABH = EBH (gt)

=> △BHA = △BHE (cgv-gn)

b, Vì △BHA = △BHE (cmt) => BA = BE (2 cạnh tương ứng)

Xét △BAD và △BED

Có: AB = BE (cmt)

    ABD = EBD (gt)

   BD là cạnh chung

=> △BAD = △BED (c.g.c)

=> BAD = BED (2 góc tương ứng)

Mà BAD = 90o

=> BED = 90o

=> DE ⊥ BE   

=> DE ⊥ BC

c, Vì △BAD = △BED (cmt) => AD = ED (2 cạnh tương ứng)

Xét △EDC vuông tại E có: DE < DC (cạnh góc vuông nhỏ hơn cạnh huyền)

=> AD < DC 

d, Ta có: AD = ED (cmt) => △ADE vuông tại D => DAE = DEA 

Vì AK ⊥ BC (gt) và DE ⊥ BC (cmt)

=> AK // DE (từ vuông góc đến song song) 

=> KAE = AED (2 góc so le trong)

mà DAE = DEA  (cmt)

=> KAE = DAE => KAE = CAE

Mà AE nằm giữa AK, AC

=> AE là phân giác CAK

18 tháng 6 2021

Xét \(\Delta ABK\),ta có: BE là phân giác \(\angle ABK,BE\bot AK\)

\(\Rightarrow\Delta ABK\) cân tại B \(\Rightarrow BE\) là trung trực AK

Xét \(\Delta ABD\) và \(\Delta KBD:\) Ta có: \(\left\{{}\begin{matrix}AB=BK\\BDchung\\\angle ABD=\angle KBD\end{matrix}\right.\)

\(\Rightarrow\Delta ABD\sim\Delta KBD\left(c-g-c\right)\Rightarrow\angle BKD=\angle BAD=90\)

Ta có: \(\angle BAD+\angle BKD=90+90=180\Rightarrow BAKD\) nội tiếp

\(\Rightarrow\angle AKD=\angle ABD=\angle KBD=\angle KAH\left(=90-\angle BKA\right)\)

\(\Rightarrow\)\(AI\parallel KD\)

Vì \(I\in BE\Rightarrow IA=IK\Rightarrow\Delta IAK\) cân tại I \(\Rightarrow\angle IKA=\angle IAK\)

BADK nội tiếp \(\Rightarrow\angle KAD=\angle KBD=\angle ABD=\angle AKD\)

\(\Rightarrow\angle IKA=\angle DAK\Rightarrow\)\(IK\parallel AD\Rightarrow AIKD\) là hình bình hành

mà \(IA=IK\Rightarrow IKDA\) là hình thoiundefined

31 tháng 12 2023

 

e) vì AC vuông góc vs BK , KE ( kéo dài ED)vuông góc với BC mà AC và KE cắt nhau tại D => D là trực tâm của tam giác KBC => BD vuoogn góc với KC ( 1 ) .M là trung điểm của KC => BM là đường cao đồng thời là đường trung trực của tam giác KBC ( 2 ) . từ  ( 1 ) và ( 2 ) => B, D , M thằng hàng