K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2020

\(n+1⋮\left(\sqrt{n}-1\right)\)

\(\left(n-1+2\right)⋮\left(\sqrt{n}-1\right)\)

\(2⋮\left(\sqrt{n}-1\right)\)

suy ra n=9

16 tháng 1 2016

a) ta có: n+2 chia hết cho n-3

=>(n-3)+5 chia hết cho n-3

Mà n-3 chia hết cho n-3

=>5 chia hết cho n-3

=> n-3 thuộc Ư(5)={1;5;-1;-5}

=> n thuộc {4;8;2;-2}

b) Ta có: 6n+1 chia hết cho 3n-1

=>(6n-2)+2+1 chia hết cho 3n-1

=>2(3n-1) +3 chia hết cho 3n-1

Mà 2(3n-1) chia hết cho 3n-1

=> 3 chia hết cho 3n-1

=> 3n-1 thuộc Ư(3)={1;3;-1;-3}

=> 3n thuộc {2;4;0;-2}

=>n thuộc {2/3 ; 4/3 ; 0 ; -2/3}

Mà n thuộc Z

=>n=0

1 tháng 8 2015

1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6

Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60

n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)

n chia hết cho 7 => 60k + 1 chia hết cho 7

<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)

<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)

Vậy k nhỏ nhất là 5

Thế vào (*): n = 301 thỏa mãn

2. a) n = 25k - 1 chia hết cho 9

<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)

<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)

Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4

Thế vào trên được n = 99 thỏa mãn

b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21

Vậy không có n thỏa mãn

c) Đặt n = 9k

9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)

<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)

9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)

Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)

<=> a + 1 ≡ 0 (mod 4) (*)

Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn

Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D

13 tháng 10 2015

1. n = 301

2.a) n = 99

b) không có

c) n = 774

13 tháng 2 2016

3/ => a(b-2) thuộc Ư(3) = {1;3;-1;-3}

Mà a > 0

=> a thuộc {1;3}

Ta có bảng kết quả:

a13
b-231
b53

 

25 tháng 2 2020

a.

n+3 chia hết cho n+1

=> n+1+2 chia hết cho n+1

=>(n+1)+2 chia hết cho n+1

=> 2 chia hết cho n+1

=> n +1 thuộc Ư(2)={-1,-2,1,2}

n+1-1-212
n-2-301

Vậy....

25 tháng 2 2020

b.

n+4 chia hết cho n-1

=> n-1+5 chia hết cho n-1

=> (n-1)+5 chia hết cho n-1

=> 5 chia hết cho n-1

=> n-1 thuộc Ư(5)={-1,-5,1,5}

n-1-1-515
n0-426

Vậy....

10 tháng 10 2023

3n + 1 chia hết cho n - 2

⇒ 3n - 6 + 7 chia hết cho n - 2

⇒ 3(n - 2) + 7 chia hết cho n - 2

⇒ 7 chia hết cho n - 2

⇒ n - 2 ∈ Ư(7) = {1; -1; 7; -7}

⇒ n ∈ {3; 1; 9; -5} 

10 tháng 10 2023

6+7 là sao v ạ?

1 tháng 9 2017

để n^2 +2002 là số chính phương 
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0) 
=> a^2 -n^2 =2002 
=> (a-n)(a+n) =2002 
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2 
mà a-n -(a+n) =-2n chia hết cho 2 
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2 
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4 
=> vô lý 

1 tháng 9 2017

Ai giải được thì nhớ giải rõ ràng nhé! Xin cam ơn người giải được.