K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2020

A B C D H E I K

Mình hỗ trợ vẽ hình nhé =)

15 tháng 6 2020

Bài làm

~ Mik hỗ trợ làm bài, chú chả bảo anh làm bài này cho :< Giận thật sự :< ~

a) Xét tam giác ABD và tam giác AHD có:

AB = AH ( gt )

^BAD = ^CAD ( Do AD phân giác  )

AD chung 

=> Tam giác ABD = tam giác AHD ( c.g.c )

=> ^ABD = ^AHB ( hai góc tương ứng )

b) Xét tam giác AHE và tam giác ABC có:

AB = AH ( gt )

^ABC chung

^ABD = ^AHD ( cmt )

=> Tam giác AHE = tam giác ABC ( g.c.g )

c) Vì tam giác ABD = tam giác AHD ( cmt )

=> BD = DH ( hai cạnh tương ứng )

Vì tam giác AHE = tam giác ABC

=> EH = BC ( hai cạnh tương ứng )

Ta có: BD + DC = BC

           DH + ED = EH

Mà EH = BC, BD = DH ( cmt )

=> DC = ED                                                 (1)

~ Tự chứng minh tiếp, bài khá gắt ~

a: Xét ΔADH và ΔADB có

AD chung

\(\widehat{DAH}=\widehat{DAB}\)

AH=AB

Do đó: ΔADH=ΔADB

=>\(\widehat{ADH}=\widehat{ADB}\) và \(\widehat{ABD}=\widehat{AHD}\)

Xét ΔAHE vuông tại A và ΔABC vuông tại A có

AH=AB

\(\widehat{AHE}=\widehat{ABC}\)

Do đó: ΔAHE=ΔABC

=>AE=AC 

=>ΔAEC cân tại A

Ta có: ΔAEC cân tại A

mà AD là đường phân giác

nên AD\(\perp\)EC
 

22 tháng 3 2022

a) Xét tam giác ABD và tam giác AHD có:

AB = AH ( gt )

^BAD = ^CAD ( Do AD phân giác  )

AD chung 

=> Tam giác ABD = tam giác AHD ( c.g.c )

=> ^ABD = ^AHB ( hai góc tương ứng )

b) Xét tam giác AHE và tam giác ABC có:

AB = AH ( gt )

^ABC chung

^ABD = ^AHD ( cmt )

=> Tam giác AHE = tam giác ABC ( g.c.g )

22 tháng 3 2022

Ôi cảm ơn bạn nhé mừng quá

2 tháng 3 2022

Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)

b.Xét tam giác vuông ABH và tam giác vuông ADH, có:

HD = HB ( gt )

AH: cạnh chung

Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )

=> AB = AD ( 2 cạnh tương ứng )

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

27 tháng 4 2019

đề bài thiếu bn ơi, ko cho H là j mà câu a) lại bắt c/m góc ADH=góc ADB à

5 tháng 5 2023

a) - Xét tam giác ABD và tam giác AED, có:
    + Chung AD
    + góc BAD = góc EAD (AD là tia phân giác của góc BAC)
    + AB = AE (gt)
=> tam giác ABD = tam giác AED (cgc)

5 tháng 5 2023

câu b) hình như điều cần chứng minh nhầm rồi hay sao ý

16 tháng 4 2022

undefined

Xét hai tam giác vuông ABD và HBD, ta có:

∠B1 = ∠B2 ( vì BD là tia phân giác của góc ABC).

Cạnh huyền BD chung

∠BAD = ∠BHD = 90º

Suy ra: ΔABD = ΔHBD (cạnh huyền, góc nhọn)

⇒ AD = HD (2 cạnh tương ứng) (1)

Trong tam giác vuông DHC có ∠DHC = 90o

⇒ DH < DC (cạnh góc vuông nhỏ hơn cạnh huyền) (2)

Từ (1) và (2) suy ra: AD < DC

16 tháng 4 2022

ccopy thì cũng phải lựa đúng bài chứ

 

16 tháng 4 2022

undefined

Xét hai tam giác vuông ABD và HBD, ta có:

∠B1 = ∠B2 ( vì BD là tia phân giác của góc ABC).

Cạnh huyền BD chung

∠BAD = ∠BHD = 90º

Suy ra: ΔABD = ΔHBD (cạnh huyền, góc nhọn)

⇒ AD = HD (2 cạnh tương ứng) (1)

Trong tam giác vuông DHC có ∠DHC = 90o

⇒ DH < DC (cạnh góc vuông nhỏ hơn cạnh huyền) (2)

Từ (1) và (2) suy ra: AD < DC