K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2020

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) fhhhhhhhhh

12 tháng 6 2020

a) Gọi K là giao của MN và CD

Ta có: \(\widehat{BMN}=\widehat{MTD}\)(so le trong và MN//AP) và \(\widehat{MTD}=\widehat{APD}\) (đồng vị và MN//AP)

\(\Rightarrow\widehat{BMN}=\widehat{APD}\)

Xét \(\Delta BMN\)và \(\Delta DPA\)có:

\(\hept{\begin{cases}\widehat{MBN}=\widehat{PDA}\left(=90^o\right)\\\widehat{BMN}=\widehat{APD}\left(cmt\right)\end{cases}}\)

=> \(\Delta BMN~\Delta DPA\left(g.g\right)\Rightarrow\frac{BM}{DP}=\frac{BN}{DA}\Rightarrow\frac{BM}{BN}=\frac{DP}{DA}\)

Mà \(BM=\frac{AB}{2},DA=BD\sin\widehat{ABD}=\frac{\sqrt{2}BD}{2}=\sqrt{2}OB\)

Do đó: \(\frac{\frac{\sqrt{2}OD}{2}}{BN}=\frac{DP}{\sqrt{2}OB}\Rightarrow\frac{OD}{BN}=\frac{DP}{OB}\)

Xét \(\Delta DOP\)và \(\Delta BNO\)có: \(\hept{\begin{cases}\widehat{ODP}=\widehat{NBO}\left(=45^o\right)\\\frac{OD}{BN}=\frac{DP}{OB}\end{cases}\Rightarrow\Delta DOP~\Delta BNO\left(c.g.c\right)\Rightarrow\widehat{DOP}=\widehat{BNO}}\)

Mà \(\widehat{DON}=\widehat{BNO}+\widehat{OBN}=\widehat{BNO}+45^o\)

Và \(\widehat{DON}=\widehat{DOP}+\widehat{NOP}\)

Do vậy \(\widehat{NOP}=45^o\)

12 tháng 6 2020

2. Ta có \(\frac{OP}{ON}=\frac{OD}{BN}\left(\Delta DOP~\Delta BNO\right)\)

Nên \(\frac{OP}{ON}=\frac{OB}{BN}\Rightarrow\frac{OP}{OB}=\frac{ON}{BN}\) 

Xét \(\Delta OPN\)và \(\Delta BQN\)có: \(\hept{\begin{cases}\widehat{PON}=\widehat{OBN}\left(=45^o\right)\\\frac{OP}{OB}=\frac{ON}{BN}\end{cases}\Rightarrow\Delta OPN~\Delta BON\left(c.g.c\right)\Rightarrow\widehat{OPN}=\widehat{BON}}\)

Gọi I là tâm đường tròn ngoại tiếp tam giác NOP

Ta có \(\widehat{ION}=\frac{180^o-\widehat{OIN}}{2}=90^o-\widehat{OPN}=\widehat{BOC}-\widehat{BON}=\widehat{CON}\)

=> 2 tia OI,OC trùng nhau 

Vậy I thuộc OC

17 tháng 9 2018

A B C D O N M P

+) Ta có: DP // AB => ^APD = ^BAP (2 góc so le trong). Mà ^BAP = ^NMB (Do MN // AP)

Nên ^APD = ^NMB => \(\Delta\)ADP ~ \(\Delta\)NBM (g.g) => \(\frac{AD}{NB}=\frac{DP}{BM}\)=> \(AD.BM=NB.DP\)

Hoặc \(AB.BM=NB.DP\)=> \(OB^2=NB.DP\)(Do \(AB.BM=\frac{AB^2}{2}=OB^2\)theo ĐL Pytago)

Hay \(OB.OD=NB.DP\)=> \(\frac{OB}{DP}=\frac{NB}{OD}\)

Xét \(\Delta\)BNO và \(\Delta\)DOP có: ^OBN = ^PDO (=450\(\frac{OB}{PD}=\frac{NB}{OD}\)(cmt)

=> \(\Delta\)BNO ~ \(\Delta\)DOP (c.g.c) (đpcm).

+) \(\Delta\)BNO ~ \(\Delta\)DOP (cmt) => ^BON = ^DPO (1)

Trong \(\Delta\)ODP có: ^DOP + ^DPO = 1800 - ^ODP = 1350 (2)

Từ (1) và (2) suy ra ^DOP + ^BON = 1350 => ^NOP = 1800 - (^DOP + ^BON) = 450

Vậy ^NOP = 450.

29 tháng 10 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Trong  △ ABD ta có:

M là trung điểm của AB

Q là trung điểm của AD nên MQ là đường trung bình của  △ ABD.

⇒ MQ // BD và MQ = 1/2 BD (tính chất đường trung bình của tam giác) (1)

Trong  △ CBD ta có:

N là trung điểm của BC

P là trung điểm của CD

nên NP là đường trung bình của  △ CBD

⇒ NP // BD và NP = 1/2 BD (tính chất đường trung bình của tam giác) (2)

Từ (1) và (2) suy ra: MQ // NP và MQ = NP nên tứ giác MNPQ là hình bình hành

AC ⊥ BD (gt)

MQ // BD

Suy ra: AC ⊥ MQ

Trong △ ABC có MN là đường trung bình ⇒ MN // AC

Suy ra: MN ⊥ MQ hay (NMQ) = 90 0

Vậy tứ giác MNPQ là hình chữ nhật.

11 tháng 11 2018

@ Trần Ngọc Huyền @  Em lần sau nhớ chia bài ra đăng nhiều lần nhé! . 

29 tháng 11 2019

Đồng ý với cô Nguyễn Thị Linh Chi

Đăng nhiều thế mới nhìn đã choáng

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:a, =B, =*c, =3, cho...
Đọc tiếp

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM

2
28 tháng 2 2016

giúp mình với nha 

Câu 3:

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD

9 tháng 3 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

*Trong BCD,ta có:

K là trung điểm của BC (gt)

N là trung điểm của CD (gt)

Nên NK là đường trung bình của  ∆ BCD

⇒ NK // BD và NK = 1/2 BD (1)

*Trong  ∆ BED,ta có:

M là trung điểm của BE (gt)

I là trung điểm của DE (gt)

Nên MI là đường trung bình của  ∆ BED

⇒ MI // BD và MI = 1/2 BD (t/chất đường trung bình trong tam giác) (2)

Từ (1) và (2) suy ra: MI // NK và MI = NK

Nên tứ giác MKNI là hình bình hành.

*Trong ∆ BEC ta có MK là đường trung bình.

⇒ MK = 1/2 CE (t/chất đường trung bình của tam giác)

BD = CE (gt). Suy ra: MK = KN

Vậy hình bình hành MKNI là hình thoi.

⇒IK ⊥ MN (t/chất hình thoi).