K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2020

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) fhhhhhhhhh

12 tháng 6 2020

a) Gọi K là giao của MN và CD

Ta có: \(\widehat{BMN}=\widehat{MTD}\)(so le trong và MN//AP) và \(\widehat{MTD}=\widehat{APD}\) (đồng vị và MN//AP)

\(\Rightarrow\widehat{BMN}=\widehat{APD}\)

Xét \(\Delta BMN\)và \(\Delta DPA\)có:

\(\hept{\begin{cases}\widehat{MBN}=\widehat{PDA}\left(=90^o\right)\\\widehat{BMN}=\widehat{APD}\left(cmt\right)\end{cases}}\)

=> \(\Delta BMN~\Delta DPA\left(g.g\right)\Rightarrow\frac{BM}{DP}=\frac{BN}{DA}\Rightarrow\frac{BM}{BN}=\frac{DP}{DA}\)

Mà \(BM=\frac{AB}{2},DA=BD\sin\widehat{ABD}=\frac{\sqrt{2}BD}{2}=\sqrt{2}OB\)

Do đó: \(\frac{\frac{\sqrt{2}OD}{2}}{BN}=\frac{DP}{\sqrt{2}OB}\Rightarrow\frac{OD}{BN}=\frac{DP}{OB}\)

Xét \(\Delta DOP\)và \(\Delta BNO\)có: \(\hept{\begin{cases}\widehat{ODP}=\widehat{NBO}\left(=45^o\right)\\\frac{OD}{BN}=\frac{DP}{OB}\end{cases}\Rightarrow\Delta DOP~\Delta BNO\left(c.g.c\right)\Rightarrow\widehat{DOP}=\widehat{BNO}}\)

Mà \(\widehat{DON}=\widehat{BNO}+\widehat{OBN}=\widehat{BNO}+45^o\)

Và \(\widehat{DON}=\widehat{DOP}+\widehat{NOP}\)

Do vậy \(\widehat{NOP}=45^o\)

12 tháng 6 2020

2. Ta có \(\frac{OP}{ON}=\frac{OD}{BN}\left(\Delta DOP~\Delta BNO\right)\)

Nên \(\frac{OP}{ON}=\frac{OB}{BN}\Rightarrow\frac{OP}{OB}=\frac{ON}{BN}\) 

Xét \(\Delta OPN\)và \(\Delta BQN\)có: \(\hept{\begin{cases}\widehat{PON}=\widehat{OBN}\left(=45^o\right)\\\frac{OP}{OB}=\frac{ON}{BN}\end{cases}\Rightarrow\Delta OPN~\Delta BON\left(c.g.c\right)\Rightarrow\widehat{OPN}=\widehat{BON}}\)

Gọi I là tâm đường tròn ngoại tiếp tam giác NOP

Ta có \(\widehat{ION}=\frac{180^o-\widehat{OIN}}{2}=90^o-\widehat{OPN}=\widehat{BOC}-\widehat{BON}=\widehat{CON}\)

=> 2 tia OI,OC trùng nhau 

Vậy I thuộc OC

Một số bài toán hay về tâm nội tiếp:Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam...
Đọc tiếp

Một số bài toán hay về tâm nội tiếp:

Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.

Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam giác AID,BIC. M,N là trung điểm các cạnh AB,CD. Chứng minh rằng MN chia đôi ST.

Bài 3: Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F. Kẻ DH vuông góc EF tại H, G là trung điểm DH. Gọi K là trực tâm tam giác BIC. Chứng minh rằng GK chia đôi EF.

Bài 4: Cho tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC,CA,AB tại D,E,F. Gọi AI cắt DE,DF tại K,L; H là chân đường cao hạ từ A của tam giác ABC, M là trung điểm BC. Chứng minh rằng bốn điểm H,K,L,M cùng thuộc một đường tròn có tâm nằm trên (Euler) của tam giác ABC.

1
14 tháng 3 2020

chị gisp em bài này

4 tháng 1 2018

A B D C M P Q I K R E F

a) Gọi I, K lần lượt là trung điểm của AP và DP. Ta có :

IK song song và bằng 1/2 AD hay bằng 1/2 BC.

KM = DM - DK = DC/2 - DP / 2 = PC/2

Mà \(\widehat{IKM}=\widehat{ADC}=\widehat{BCP}\)

\(\Rightarrow\Delta IKM\sim\Delta BCP\left(c-g-c\right)\Rightarrow\widehat{BPC}=\widehat{IMP}\)

Mà \(\widehat{BPC}=\widehat{ABP}\) (AB // PC) ; \(\widehat{ABP}=\widehat{AQR}\) (Hai góc nội tiếp cùng chắn cung AR)

Do đó \(\widehat{IME}=\widehat{IQE}\Rightarrow\) Tứ giác IMQE nội tiếp.

\(\Rightarrow\widehat{EIQ}=\widehat{EMQ}\)

Mà IE // AF (Đường trung bình) nên \(\widehat{IEQ}=\widehat{FAQ}\)  (Đồng vị) 

\(\Rightarrow\widehat{FAQ}=\widehat{FMQ}\) hay tứ giác AMQF nội tiếp.

Do đó đường tròn ngoại tiếp tam giác AQF đi qua A, M cố định.

Vậy tâm đường tròn thuộc đường trung trực của AM.

b) Ta có \(\widehat{EPR}=\widehat{BPC}=\widehat{ABP}=\widehat{AQE}\) nên \(\Delta EPR\sim\Delta EQP\left(g-g\right)\Rightarrow\frac{EP}{EQ}=\frac{ER}{EP}\Rightarrow EP^2=ER.EQ\)

Vì AE là tiếp tuyến nên \(\widehat{EAR}=\widehat{AQE}\Rightarrow\Delta EAR\sim\Delta EQA\left(g-g\right)\Rightarrow\frac{EA}{EQ}=\frac{ER}{EA}\Rightarrow EA^2=EQ.ER\)

\(\Rightarrow EP^2=EA^2\Rightarrow EP=EA=EF\)

\(\Rightarrow\widehat{FAP}=90^o\Rightarrow\widehat{FMQ}=90^o\) (Hai góc nội tiếp cùng chắn cung FQ)

\(\Rightarrow MQ\perp CD\)