K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2019

\(A=\frac{2^2}{1.3}+\frac{3^2}{2.4}+\frac{4^2}{3.5}+...+\frac{99^2}{98.100}\)

\(A=\frac{2.2}{1.3}+\frac{3.3}{2.4}+\frac{4.4}{3.5}+...+\frac{99.99}{98.100}\)

\(A=\frac{2}{1}+\frac{99}{100}\)

\(A=\frac{200}{100}+\frac{99}{100}=\frac{299}{100}\)

Hok tốt

8 tháng 8 2023

a) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{x\times\left(x+3\right)}=\dfrac{99}{200}\)

Ta có: \(\left(1-\dfrac{1}{3}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{5}-\dfrac{1}{7}\right)\times\dfrac{1}{2}+...+\left(\dfrac{1}{x}-\dfrac{1}{x+3}\right).\dfrac{1}{2}=\dfrac{99}{200}\)

\(\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)

\(\dfrac{1}{2}\times\left(1-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)

\(1-\dfrac{1}{x+3}=\dfrac{99}{200}:\dfrac{1}{2}\)

\(1-\dfrac{1}{x+3}=\dfrac{99}{100}\)

\(\dfrac{1}{x+1}=1-\dfrac{99}{100}\)

\(\dfrac{1}{x+1}=\dfrac{1}{100}\)

\(\Rightarrow x+1=100\)

\(x=100-1\)

\(x=99\)

8 tháng 8 2023

câu b thiếu kết quả đúng không bn?

31 tháng 8 2021

a) A = 2x^2 + 2y^2

31 tháng 8 2021

a, \(A=\left(x-y\right)^2+\left(x+y\right)^2\)

\(=x^2-2xy+y^2+x^2+2xy+y^2\)

\(=2x^2+2y^2\)

11 tháng 2 2022

đk : x >= 0 ; x khác 4 

\(A=\dfrac{2\sqrt{x}-4-\sqrt{x}-2+4}{x-4}=\dfrac{\sqrt{x}-2}{x-4}=\dfrac{1}{\sqrt{x}+2}\)

11 tháng 2 2022

ĐKXĐ: x khác 4; x ≥ 0

\(A=\dfrac{2\sqrt{x}-4-\sqrt{x}-2+4}{x-4}=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{1}{\sqrt{x}+2}\)

2 tháng 10 2021

a) (x+2)2+x(x-4)

   =x2+4x+4+x2-4x

   =2x2+4

b)(x-3)2-(x+3)(x-4)

  =x2-6x+9-x2+4x-3x+12

  =-5x+12

c) (3x+1)2+3x(2-4x)

   =9x2+6x+1+6x-12x2

   =-3x2+12x+1

d) (2x-4y)2-(2x-3)(2x-3y)

  =4x2-16xy+16y2-4x2+6xy+6x-9y

  =16y2-10xy+6x-9y

15 tháng 7 2023

\(A=\left(x+2\right)^2-\left(x+3\right)\left(x-1\right)+15\)

\(A=x^2+4x+4-\left(x^2-x+3x-3\right)+15\)

\(A=\left(x^2-x^2\right)+\left(4x+x-3x\right)+\left(15+3+4\right)\)

\(A=2x+22\)

______________________

\(B=\left(x+1\right)\left(x-1\right)-\left(x+4\right)^2-6\)

\(B=\left(x^2-1\right)-\left(x^2+8x+16\right)-6\)

\(B=\left(x^2-x^2\right)-8x-\left(1+16+6\right)\)

\(B=-8x-23\)

_________________

\(C=\left(3x+2\right)\left(3x-2\right)-\left(3x-1\right)^2\)

\(C=\left[\left(3x\right)^2-2^2\right]-\left(9x^2-6x+1\right)\)

\(C=\left(9x^2-9x^2\right)+6x-\left(4+1\right)\)

\(C=6x-5\)

15 tháng 7 2023

a) Rút gọn biểu thức A = (x + 2)2 - (x + 3)(x - 1) + 15:

Bắt đầu bằng việc mở ngoặc:
A = (x^2 + 4x + 4) - (x^2 + 2x - 3x - 3) + 15

Tiếp theo, kết hợp các thành phần tương tự:
A = x^2 + 4x + 4 - x^2 - 2x + 3x + 3 + 15

Tiếp tục đơn giản hóa:
A = x^2 - x^2 + 4x - 2x + 3x + 4 + 3 + 15

Kết quả cuối cùng:
A = 5x + 19

b) Rút gọn biểu thức B = (x - 1)(x + 1) - (x + 4)2 - 6:

Bắt đầu bằng việc mở ngoặc:
B = (x^2 - 1) - (x^2 + 4x + 4) - 6

Tiếp theo, kết hợp các thành phần tương tự:
B = x^2 - 1 - x^2 - 4x - 4 - 6

Tiếp tục đơn giản hóa:
B = x^2 - x^2 - 4x - 4 - 6 - 1

Kết quả cuối cùng:
B = -4x - 11

c) Rút gọn biểu thức C = (3x - 2)(3x + 2) - (3x - 1)2:

Bắt đầu bằng việc mở ngoặc:
C = (9x^2 - 4) - (9x^2 - 6x + 1)

Tiếp theo, kết hợp các thành phần tương tự:
C = 9x^2 - 4 - 9x^2 + 6x - 1

Tiếp tục đơn giản hóa:
C = 9x^2 - 9x^2 + 6x - 4 - 1

Kết quả cuối cùng:
C = 6x - 5

a: Ta có: \(A=\left(x+2\right)\left(x-4\right)+\left(x+1\right)\left(x-6\right)\)

\(=x^2-4x+2x-8+x^2-6x+x-6\)

\(=2x^2-7x-14\)

b: \(B=\left(2a-b\right)\left(4a^2+2ab+b^2\right)=8a^3-b^3\)

c: \(C=\left(2+x\right)\left(2-x\right)\left(x+4\right)\)

\(=\left(4-x^2\right)\left(x+4\right)\)

\(=4x+16-x^3-4x^2\)

10 tháng 10 2021

\(a.x^3+8-x^3+2=10\)

\(b.x^2+10x+25-4x\left(4x^2+12x+9\right)-\left(2x-1\right)\left(x^2-9\right)=x^2+10x+25-16x^3-28x^2-36x-2x^3+18x+x^2-9=-18x^3-26x^2-8x+16=\)