Chứng minh rằng 2/(n+1).(n+2)=1/n.(n+1)-1/(n+1).(n+2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Với \(n=2\Rightarrow P_2=2!=2=1!+1\) (đúng)
- Với \(n=3\Rightarrow\left\{{}\begin{matrix}P_3=3!=6\\2P_2+P_1+1=2.2!+1+1=6\end{matrix}\right.\) (đúng)
- Giả sử đẳng thức đúng với \(n=k\ge2\) hay:
\(P_k=\left(k-1\right)P_{k-1}+\left(k-2\right)P_{k-2}+...+P_1+1\)
Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay
\(P_{k+1}=k.P_k+\left(k-1\right)P_{k-1}+...+P_1+1\)
Thật vậy, ta có:
\(k.P_k+\left(k-1\right)P_{k-1}+...+P_1+1=k.P_k+P_k\)
\(=\left(k+1\right)P_k=P_{k+1}\) (đpcm)
Em xem lại đề nhé:
Với \(n\inℕ^∗\), chọn n = 1 thì \(C=\frac{1}{1+1}=\frac{1}{2}\)
\(a,\sqrt{22-12\sqrt{2}}+\sqrt{6+4\sqrt{2}}=\sqrt{\left(3\sqrt{2}-2\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\\ =3\sqrt{2}-2+2+\sqrt{2}=4\sqrt{2}\\ b,\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}\\ =\dfrac{\sqrt{n}-\sqrt{n+1}}{-1}=\sqrt{n+1}-\sqrt{n}\)
a) \(\sqrt{22-12\sqrt{2}}+\sqrt{6+4\sqrt{2}}\)
\(=\sqrt{\left(3\sqrt{2}-2\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\)
\(=3\sqrt{2}-2+2+\sqrt{2}=4\sqrt{2}\)
b) \(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)
Bạn xem lại đề bài!
\(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}=\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}\)
\(=\frac{2}{n\left(n+1\right)\left(n+2\right)}\)