tìm giá trị các số thik hợp của A và B để có:
A +B=A-B
giúp mik ik
ai nhanh nhất cho tym nek
..................nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a+b=a-b
a =a-b-b
a =a-(b+b)
a = a-2b
a-a =2b
0 =2b
=>b=0:2=0
vậy khi b=0 thì a thuộc Z
\(P=\dfrac{a^2+b^2}{a-b}=\dfrac{\left(a-b\right)^2+2ab}{a-b}=\dfrac{\left(a-b\right)^2+2}{a-b}=\left(a-b\right)+\dfrac{2}{a-b}\)
Áp dụng bất đẳng thức Cauchy ta có:
\(\left(a-b\right)+\dfrac{2}{a-b}\ge2\sqrt{\left(a-b\right).\dfrac{2}{a-b}}=2\sqrt{2}\) hay \(P\ge2\sqrt{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a>b\\a-b=\dfrac{2}{a-b}\\ab=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b=\sqrt{2}\\ab=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+\sqrt{2}\\\left(b+\sqrt{2}\right)b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{\pm6+\sqrt{2}}{2}\\b=\dfrac{\pm\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)Vậy \(MinP=2\sqrt{2}\), đạt tại \(\left(a;b\right)=\left(\dfrac{\sqrt{6}+\sqrt{2}}{2};\dfrac{\sqrt{6}-\sqrt{2}}{2}\right),\left(\dfrac{-\sqrt{6}+\sqrt{2}}{2};\dfrac{-\sqrt{6}-\sqrt{2}}{2}\right)\)
Ta có: \(B=\frac{10n}{n-3}=\frac{10n-30+30}{n-3}=10+\frac{30}{n-3}\)
a) B nguyên <=> \(\frac{30}{n-3}\)nguyên <=> n - 3 \(\inƯ\left(30\right)=\left\{\pm1;\pm2;\pm3;\pm5;\pm6;\pm10;\pm15;\pm30\right\}\)
Ta có bảng:
n-3 | -30 | -15 | -10 | -6 | -5 | -3 | -2 | -1 | 1 | 2 | 3 | 5 | 6 | 10 | 15 | 30 |
n | -27 | -12 | -7 | -3 | -2 | 0 | 1 | 2 | 4 | 5 | 6 | 8 | 9 | 13 | 18 | 33 |
tm | tm | tm | tm | tm | tm | tm | tm | tm | tm | tm | tm | tm | tm | tm | tm |
Vậy n ...
b) B lớn nhất <=> \(\frac{30}{n-3}\) đạt giá trị lớn nhất
TH1: n - 3 < 0 => \(\frac{30}{n-3}< 0\)loại
TH2: n - 3 > 0
=> \(\frac{30}{n-3}>0\) khi đó: \(\frac{30}{n-3}\) lớn nhất <=> n - 3 = 1 <=> n = 4 ( thỏa mãn vì 4 - 3 > 0)
Vậy Giá trị lớn nhất của B = \(\frac{10.4}{4-3}=40\) tại n = 1
ta có: \(B=\frac{10n}{n-3}\left(n\ne3\right)\)
=> B=\(\frac{10\left(n-3\right)+30}{n-3}=10+\frac{30}{n-3}\)
a) Để B có giá trị nguyên thì \(\frac{30}{n-3}\)có giá trị nguyên
=> 30 chia hết cho n-3
Vì n nguyên => n-3 nguyên => n-3=Ư(30)={-30;-10;-6;-5;-2;-3;-1;1;2;3;5;6;10;30}
bạn lập bảng tìm giá trị của n
b) \(B=10+\frac{30}{n-3}\left(n\ne3\right)\)
để B đạt GTLN thì \(\frac{30}{n-3}\)đạt GTLN
=> n-3 là số nguyên dương nhỏ nhất
=> n-3=1
=> n=4 (tmđk)
Bạn tham khảo tại đây:
Câu hỏi của Chibi Anime - Toán lớp 6 - Học toán với OnlineMath
a, \(\dfrac{4}{7}\) và \(\dfrac{34}{37}\)
\(\dfrac{4}{7}\) = 1 - \(\dfrac{3}{7}\) ; \(\dfrac{34}{37}\) = 1 - \(\dfrac{3}{37}\)
Vì \(\dfrac{3}{7}\) > \(\dfrac{3}{37}\) nên \(\dfrac{4}{7}\) < \(\dfrac{34}{37}\) ( hai phân số, phân số nào có phần bù lớn hơn thì phân số đó nhỏ hơn)
b, \(\dfrac{103}{271}\) và \(\dfrac{130}{217}\)
\(\dfrac{103}{271}\) < \(\dfrac{130}{271}\) < \(\dfrac{130}{217}\)
Vậy \(\dfrac{103}{271}\) < \(\dfrac{130}{217}\)
\(A=\left|x-5\right|+\left|x+3\right|\ge\left|5-x+x+3\right|=8\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-5\ge0\\x+3\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge5\\x\ge-3\end{cases}\Rightarrow}x\ge5}\)
Vậy,..........
được hong bro?
1+0=1-0