K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2014

(a2+b2+c2)2>2(a4+b4+c4)

<=> a+ b+ c4+ 2a2b+ 2a2c+ 2b2c> 2(a+ b+ c4)

<=> a+ b+ c- 2a2b2 - 2a2c- 2b2c< 0

<=> (a2 b2  - c2)- 4b2c<0

<=>  (ab - c2) <4b2c2

<=> ab - c2<4b2c2

<=>  a< (b+c)2

<=> a < b+c   ( a,b,c >0)

CMTT với b và c ta có

b < a  + c

c< b + a

>>> ĐPCM

30 tháng 11 2014

bạn oi tra loi gium cau hoi tren minh voi câu hình thang kìa đi ma năn nỉ đó mà

16 tháng 10 2020

Từ a3 + b3 + c3 = 3abc

<=> (a + b)(a2 - ab + b2) + c3 - 3abc = 0

<=> (a + b)3 + c3 - 3ab(a + b) - 3abc = 0

<=> (a + b + c)(a2 + 2ab + b2 - ac - bc + c2) - 3ab(a + b + c) = 0

<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0

<=> \(\orbr{\begin{cases}a+b+c=0\left(loại\right)\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)

<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> a = b = c

=> tam giác đó là tam giác đều

b) Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

CM đúng (tự cm tđ)

Ta có: \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2xz}=\frac{9}{\left(x+y+z\right)^2}=9\)(vì x + y + z = 1)

Dấu "=" xảy ra <=> x = y = z = 1/3

16 tháng 10 2020

a) Vì a, b, c là độ dài ba cạnh của một tam giác => a, b, c > 0

Ta có : a3 + b3 + c3 = 3abc

<=> a3 + b3 + c3 - 3abc = 0

<=> ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0

<=> [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0

<=> ( a + b + c )( a2 + b2 + c2 + 2ab - ac - bc ) - 3ab( a + b + c ) = 0

<=> ( a + b + c )( a2 + b2 + c2 - ab - ac - bc ) = 0

<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)

Dễ thấy không thể xảy ra trường hợp a + b + c = 0 vì a, b, c > 0 

Xét TH còn lại ta có :

a2 + b2 + c2 - ab - ac - bc = 0

<=> 2(a2 + b2 + c2 - ab - ac - bc) = 2.0

<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0

<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ac + a2 ) = 0

<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0 (*)

Ta có : \(\hept{\begin{cases}\left(a-b\right)^2\\\left(b-c\right)^2\\\left(c-a\right)^2\end{cases}}\ge0\forall a,b,c\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)

=> Tam giác đó là tam giác đều ( đpcm )

14 tháng 3 2017

do (a-b)2\(\ge\)0 ;(b-c)2\(\ge\)0

\(\Rightarrow\)(a-b)2+(b-c)2\(\ge\)0

mà (a-b)2+(b-c)2=0 (đề bài cho)

\(\Rightarrow\)(a-b)2=0;(b-c)2=0

\(\Rightarrow\)a-b=b-c=0

\(\Rightarrow\)a=b=c

Vậy tam giác ABC đều

14 tháng 3 2017

Số học cơ mà

AH
Akai Haruma
Giáo viên
10 tháng 1 2017

Lời giải:

Áp dụng bất đẳng thức Schur cho $a,b,c$ là ba cạnh của tam giác:

\(abc\geq (a+b-c)(b+c-a)(c+a-b)=(1-2a)(2-2b)(1-2c)\)

\(\Leftrightarrow 9abc\geq 4(ab+bc+ac)-1\)

Do đó: \(A=a^2+b^2+c^2+4abc\geq a^2+b^2+c^2+\frac{16(ab+bc+ac)}{9}-\frac{4}{9}\)

Ta có:

\(a^2+b^2+c^2+2(ab+bc+ac)=(a+b+c)^2=1\)

Áp dụng BĐT AM-GM: \(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=\frac{1}{3}\Rightarrow \frac{-2(ab+bc+ac)}{9}\geq \frac{-2}{27}\)

Cộng theo vế: \(a^2+b^2+c^2+\frac{16(ab+bc+ac)}{9}\geq \frac{29}{27}\Rightarrow A\geq \frac{29}{27}-\frac{4}{9}=\frac{13}{27}\)

Do đó ta có đpcm

Dấu $=$ xảy ra khi $3a=3b=3c=1$ hay tam giác $ABC$ là tam giác đều.