K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2021

giúp mình câu b với các bạn ơi

 

a: góc BHD+góc BMD=180 độ

=>BHDM nội tiếp

b: BHDM nội tiếp

=>góc HDM+góc HBM=180 độ

=>góc ADM=góc ABC

=>góc ADM=góc ADC

=>DA là phân giáccủa góc MDC

c: Xét tứ giác DHNC có

góc DHC=góc DNC=90 độ

=>DHNC nội tiếp

=>góc NHD=góc NDC

góc NHD+góc MHD

=180 độ-góc NCD+góc MBD

=180  độ+180 độ-góc ABD-góc ACD

=180 độ

=>M,H,N thẳng hàng

a: Xét tứ giác BCEF có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BCEF là tứ giác nội tiếp đường tròn đường kính BC

Kẻ tiếp tuyến Ax của (O)

=>Ax\(\perp\)OA tại A

Xét (O) có

\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{xAC}=\widehat{ABC}\)

mà \(\widehat{ABC}=\widehat{AEF}\left(=180^0-\widehat{FEC}\right)\)

nên \(\widehat{xAC}=\widehat{AEF}\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ax//FE

ta có: Ax//FE

OA\(\perp\)Ax

Do đó: OA\(\perp\)FE

b: Xét (O) có

ΔACK nội tiếp

AK là đường kính

Do đó: ΔACK vuông tại C

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{AKC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{AKC}\)

Xét ΔADB vuông tại D và ΔACK vuông tại C có

\(\widehat{ABD}=\widehat{AKC}\)

Do đó: ΔADB~ΔACK

=>\(\dfrac{AD}{AC}=\dfrac{AB}{AK}\)

=>\(AD\cdot AK=AB\cdot AC\)

a: góc BEH+góc BFH=90 độ

=>BEHF nội tiếp

b: góc ABK=1/2*sđ cung AK=90 độ

Xét ΔABK vuông tại B và ΔAFC vuông tại F có

góc AKB=góc ACF

=>ΔABK đồng dạng với ΔAFC

14 tháng 3 2021

ai đó làm giúp với