Cho tam giác ABC cân tại A có đường cao AH.
a) Chứng minh tam giác ABH bằng tam giác ACH
b) Vẽ hai đường trung tuyến BM và CN cắt nhau tại G. Chứng minh 3 điểm A, G, H thẳng hàng.
c) Trên tia đối của tia HG, lấy điểm E sao cho HG = HE. Chứng minh G là trung điểm của AE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
b: Xét tứ giác AGCK có
M là trung điểm của đường chéo AC
M là trung điểm của đường chéo GK
Do đó: AGCK là hình bình hành
Suy ra: AG//CK
Ta có: ΔABC cân tại A
mà AH là đường cao ứng với cạnh đáy BC
nên H là trung điểm của BC
Xét ΔBAC có
AH là đường trung tuyến ứng với cạnh BC
BM là đường trung tuyến ứng với cạnh AC
AH cắt BM tại G
Do đó: G là trọng tâm của ΔABC
Suy ra: \(BG=\dfrac{2}{3}BM\)
\(\Leftrightarrow GM=MK=\dfrac{1}{3}BM\)
\(\Leftrightarrow GM+MK=GK=\dfrac{2}{3}BM\)
\(\Leftrightarrow BG=GK\)
hay G là trung điểm của BK
Tự kẻ hình nha
a) - Vì tam giác ABC cân tại A (gt)
=> AB = AC (định nghĩa)
góc ABC = góc ACB (dấu hiệu)
- Vì AH vuông góc với BC (gt)
=> tam giác ABH vuông tại H (tc)
tam giác ACH vuông tại H (tc)
- Xét tam giác vuông ABH và tam giác vuông ACH, có:
+ AB = AC (cmt)
+ Chung AC
=> tam giác vuông ABH = tam giác vuông ACH (cạnh huyền - cạnh góc vuông)
b) - Vì tam giác vuông ABH = tam giác vuông ACH (cmt)
=> BH = CH (2 cạnh tương ứng)
=> AH là đường trung tuyến tam giác ABC (dấu hiệu)
- Vì N là trung điểm của AC (gt)
=> BN là đường trung tuyến tam giác ABC (dấu hiệu)
Mà G là giao điểm của BN và AH (gt)
=> G là trọng tâm của tam giác ABC (tc)
- Xét tam giác ANG và tam giác CNK, có:
+ NG = NK (gt)
+ AN = CN (N là trung điểm của AC)
+ góc ANG = góc CNG (đối đỉnh)
=> tam giác ANG và tam giác CNK (cgc)
=> góc AGN = góc CKN (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> AG // CK (dấu hiệu)
c) - Vì G là trọng tâm của tam giác ABC (cmt)
=> BG = 2/3 BN (tc)
=> NG = 1/3 BN
Mà NK = NG (gt)
=> NK = 1/3 BN
=> NK + NG = 1/3 BN + 1/3 BN
=> GK = 2/3 BN
Mà BG = 2/3 BN (cmt)
=> GK = BG
=> G là trung điểm BK
c, G là trọng tâm
⇒HG=13AH=2(cm)⇒HG=13AH=2(cm)
d, Ta có: BAHˆ=CAHˆBAH^=CAH^ ( theo a )
Mà FHGˆ=CAHˆFHG^=CAH^ ( so le trong và Hx // AC )
⇒FHGˆ=BAHˆ⇒FHG^=BAH^
Chúc mn sang năm mới học giỏi nha !
⇒ΔAFH⇒ΔAFHcân tại F
⇒FA=FH⇒FA=FH (1)
Lại có: FHBˆ=ACBˆFHB^=ACB^ ( đồng vị và Hx // AC )
Mà ABCˆ=ACBˆABC^=ACB^ ( t/g ABC cân tại A )
⇒FHBˆ=ABCˆ⇒FHB^=ABC^
hay FHBˆ=FBHˆFHB^=FBH^
⇒ΔFBH⇒ΔFBH cân tại F
⇒FB=FH⇒FB=FH
Từ (1), (2) ⇒FB=FA⇒FB=FA
⇒CF⇒CF là trung tuyến
Mà G là trọng tâm
⇒C,G,F⇒C,G,F thẳng hàng ( đpcm )
Vậy...
a) xét tam giác ABH và tam giác ACH có
Góc AHB =Góc AHC =90 độ
AB =AC ( do tam giác abc cân)
Góc B = góc C (do tam giác abc cân)
=> tam giác ABH = tam giác ACH ( cạnh huyền, góc nhọn)
=>HB= HC (hai cạnh tương ứng bằng nhau)
b) Xét tam giác MAK và tam giác MCK có
AK=KH( gì)
Góc AKB = GÓC CKB=90 độ
MK chung
=>tam giác MAK = tam giác MCK( c. g. c)
=> MA=CM( hai cạnh tương ứng)
c) từ tam giác mak = tam giác MCK ( câu b)
=>góc MAK = góc C (..)
TA CÓ tam giác abc cân ở A =>góc B = góc C
=>góc Abc = góc Mak
d) cậu xem lại đề phần này đi nha mik thấy nó sai cái j đó
Cảm ơn ạ :3