Event Lac Dit My Den Dong Tinh
Nhan nhip My den da den giam gia soc 95% 
co su gop mat cua kevin durant lebron james va ishowspeed va ronaldo
Chuc cac ban hoc tot cung My den
YEU CAU: DA DEN, CHIM TO (MCK + 6)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2020

c, G là trọng tâm

⇒HG=13AH=2(cm)⇒HG=13AH=2(cm)

d, Ta có: BAHˆ=CAHˆBAH^=CAH^ ( theo a )

Mà FHGˆ=CAHˆFHG^=CAH^ ( so le trong và Hx // AC )

⇒FHGˆ=BAHˆ⇒FHG^=BAH^

    Chúc mn sang năm mới học giỏi nha !     

⇒ΔAFH⇒ΔAFHcân tại F

⇒FA=FH⇒FA=FH (1)

Lại có: FHBˆ=ACBˆFHB^=ACB^ ( đồng vị và Hx // AC )

Mà ABCˆ=ACBˆABC^=ACB^ ( t/g ABC cân tại A )

⇒FHBˆ=ABCˆ⇒FHB^=ABC^

hay FHBˆ=FBHˆFHB^=FBH^

⇒ΔFBH⇒ΔFBH cân tại F

⇒FB=FH⇒FB=FH

Từ (1), (2) ⇒FB=FA⇒FB=FA

⇒CF⇒CF là trung tuyến

Mà G là trọng tâm

⇒C,G,F⇒C,G,F thẳng hàng ( đpcm )

Vậy...

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

4
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

26 tháng 2 2020

a) Xét 2 tam giác ta có :

Góc AHB=AHC (= 90 độ )

AH chung

AB = AC ( vì tam giác ABC cân )

=> 2 tam giác bằng nhau

=> BH=HC

=> AH vừa là đường cao vừa là đg trung tuyến đồng thời là tia phân giác của góc BAC

b) Xét tam giác ABH vuông tại H, áp dụng đli Py-ta-go ta có:

BH^2 + AH^2= BA^2

hay 8^2 + AH^2= 10^2

=> AH = 6 (cm)

c)  Trong tam giác ABC đều có E là trung điểm của AC => BE là đg cao

Mà AH và BE là 2 đg cao cắt nhau tại G => G là trực tâm

=> GH = 1/3. AH => GH = 1/3 . 6 = 2 (cm )

d) Vì Hx // AC => Góc CEB = AFC (so le trong)

=> CF cũng là đg cao của tam giác ABC

=> 3 điểm C, G, F thẳng hàng

18 tháng 3 2020

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(do ΔABC cân tại A)

AH là cạnh chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

BAHˆ=CAHˆBAH^=CAH^(hai góc tương ứng)

mà tia AH là tia nằm giữa của hai tia AB,AC

nên AH là tia phân giác của BACˆBAC^(đpcm)

b) Áp dụng định lí pytago vào ΔABH vuông tại H, ta được

AB2=AH2+BH2AB2=AH2+BH2

hay 102=AH2+82102=AH2+82

⇒AH2=102−82=36⇒AH2=102−82=36

⇒AH=36−−√=6cm⇒AH=36=6cm

Vậy: AH=6cm

c) Ta có: ΔABH=ΔACH(cmt)

⇒HB=HC(hai cạnh tương ứng)

mà H nằm giữa B và C

nên H là trung điểm của BC

Xét ΔABC có

AH là đường trung tuyến ứng với cạnh BC(do H là trung điểm của BC)

BE là đường trung tuyến ứng với cạnh AC(do E là trung điểm của AC)

AH∩BE={G}AH∩BE={G}

Do đó: G là trọng tâm của ΔABC(đ/n)

AG=AH⋅23=6⋅23=4cmAG=AH⋅23=6⋅23=4cm

Ta có: AG+GH=AH(do A,G,H thẳng hàng)

hay GH=AH=AG=6-4=2cm

Vậy: GH=2cm

d) Ta có: BAHˆ=CAHˆBAH^=CAH^(cmt)

và FHAˆ=CAHˆFHA^=CAH^(so le trong, AC//HF)

nên BAHˆ=FHAˆBAH^=FHA^

hay FAHˆ=FHAˆFAH^=FHA^

Xét ΔFAH có FAHˆ=FHAˆFAH^=FHA^(cmt)

nên ΔFAH cân tại F(định lí đảo tam giác cân)

⇒FH=FA(1)

Ta có: ABCˆ=ACBˆABC^=ACB^(hai góc ở đáy của ΔABC cân tại A)

mà FHBˆ=ACBˆFHB^=ACB^(đồng vị, HF//AC)

nên ABCˆ=FHBˆABC^=FHB^

hay FBHˆ=FHBˆFBH^=FHB^

Xét ΔFHB có FBHˆ=FHBˆFBH^=FHB^(cmt)

nên ΔFHB cân tại F(đl đảo của tam giác cân)

⇒FH=FB(2)

Từ (1) và (2) suy ra AF=BF

mà F nằm giữa A và B

nên F là trung điểm của AB

Xét ΔABC có

CG là đường trung tuyến ứng với cạnh AB(do G là trọng tâm của ΔABC)

CF là đường trung tuyến ứng với cạnh AB(do F là trung điểm của AB)

mà CG và CF có điểm chung là C

nên C,G,F thẳng hàng(đpcm)

3 tháng 5 2023

Tự kẻ hình nha

a) - Vì tam giác ABC cân tại A (gt)
=> AB = AC (định nghĩa)
     góc ABC = góc ACB (dấu hiệu)
- Vì AH vuông góc với BC (gt)
=> tam giác ABH vuông tại H (tc)
     tam giác ACH vuông tại H (tc)
- Xét tam giác vuông ABH và tam giác vuông ACH, có: 
    + AB = AC (cmt)
    + Chung AC 
=> tam giác vuông ABH = tam giác vuông ACH (cạnh huyền - cạnh góc vuông)

b) - Vì tam giác vuông ABH = tam giác vuông ACH (cmt)
=> BH = CH (2 cạnh tương ứng)
=> AH là đường trung tuyến tam giác ABC (dấu hiệu)
- Vì N là trung điểm của AC (gt)
=> BN là đường trung tuyến tam giác ABC (dấu hiệu)
Mà G là giao điểm của BN và AH (gt)
=> G là trọng tâm của tam giác ABC (tc)
- Xét tam giác ANG và tam giác CNK, có: 
    + NG = NK (gt)
    + AN = CN (N là trung điểm của AC)
    + góc ANG = góc CNG (đối đỉnh)
=> tam giác ANG và tam giác CNK (cgc)
=> góc AGN = góc CKN (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong 
=> AG // CK (dấu hiệu)

c) - Vì G là trọng tâm của tam giác ABC (cmt)
=> BG = 2/3 BN (tc)
=> NG = 1/3 BN 
Mà NK = NG (gt)
=> NK = 1/3 BN 
=> NK + NG = 1/3 BN + 1/3 BN 
=> GK = 2/3 BN
Mà BG = 2/3 BN (cmt)
=> GK = BG 
=> G là trung điểm BK

29 tháng 1 2020

Ai làm đầu tiên mk (k) cho

Bài 1) 

a) Trong ∆ cân ABC có AH  là trung trực đồng thời là phân giác và trung tuyến

=> BAH = CAH 

Xét ∆ ABD và ∆ ACD ta có : 

AB = AC (∆ABC cân tại A) 

AD chung 

BAH = CAH (cmt) 

=> ∆ABD = ∆ACD (c.g.c)

=> BD = CD 

=> ∆BDC cân tại D 

* NOTE : Trong ∆ vuông BDH có DH < BD ( trong tam giác vuông ; cạnh góc vuông luôn luôn nhỏ hơn cạnh huyền )

Mà DH = HG 

=> DG < DB 

=> DG ko thể = BD và DC 

b) Xét ∆ABG và ∆ACG ta có : 

AG chung

BAH = CAH (cmt)

AB = AC (cmt)

=> ∆ABG = ∆ACG (c.g.c)(dpcm)

c) Vì AH = 9cm (gt)

Mà AD = 2/3AH 

=> AD = 6cm

=> DH = 9 - 6 = 3 cm

Mà AH là trung tuyến BC 

=> BH = HC = BC/2 = 4 cm 

Áp dụng định lý Py ta go vào ∆ vuông BHD ta có 

=> BD = 5 cm

Bài 2) Áp dụng định lý Py ta go vào ∆ vuông ABC ta có : 

BC = 10 cm

b) Xét ∆ vuông ABM và ∆ vuông BMC ta có : 

BM chung 

ABM = CBM ( BM là phân giác) 

=> ∆ABM = ∆BMC ( ch - gn )

c) Vì ∆ABM = ∆BMC (cmt)

=> AM = NM 

Xét ∆ vuông APM và ∆ MNC ta có :

AM = NM (cmt)

AMP = NMC ( đối đỉnh) 

=> ∆APM = ∆MNC ( cgv - gn )

d) Vì ∆ APM = ∆MNC (cmt)

=> PM = MC 

=> ∆MPC cân tại M

Mà K là trung điểm PC 

=> MK là trung tuyến đồng thời là trung trực và là phân giác ∆PMC 

=> MK vuông góc với PC 

=> M; K thẳng hàng 

Mà BM là phân giác ABC 

=> B ; M thẳng hàng 

=> B ; M ; K thẳng hàng