K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2020

A B C H M N

27 tháng 10 2021

b: \(AN\cdot AC=AH^2\)

\(AC^2-HC^2=AH^2\)

Do đó: \(AN\cdot AC=AC^2-HC^2\)

27 tháng 10 2021

mình cần phần d

27 tháng 10 2021

a: AC=16(cm)

AM=10(cm)

27 tháng 10 2021

phần d bạn :,)))

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: AC=căn 20^2-12^2=16cm

AH=12*16/20=9,6cm

BH=12^2/20=7,2cm

a: ΔAHB vuông tại H có HE là đường cao

nên AH^2=AE*AB

b: ΔAHC vuông tại H có HF là đường cao

nên AH^2=AF*AC

=>AE*AB=AF*AC

=>AE/AC=AF/AB

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

AE/AC=AF/AB

=>ΔAEF đồng dạng với ΔACB

 

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔBAC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

Xét ΔMBH vuông tại M và ΔNCH vuông tại N có

BH=CH(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔMBH=ΔNCH(cạnh huyền-góc nhọn)

Suy ra: MH=NH(hai cạnh tương ứng)

b) Ta có: AM+MB=AB(M nằm giữa hai điểm A và B)

AN+NC=AC(N nằm giữa hai điểm A và C)

mà AB=AC(ΔBAC cân tại A)

và MB=NC(ΔMBH=ΔNCH)

nên AM=AN

Xét ΔABC có 

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(AM=AN;AB=AC\right)\)

Do đó: MN//BC(Định lí Ta lét đảo)

Xét tứ giác BMNC có MN//BC(cmt) và \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

nên BMNC là hình thang cân

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=20^2-12^2=256\)

=>AC=16(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot20=12\cdot16=192\)

=>AH=9,6(cm)

Xét ΔABC vuông tại A có

\(sinABC=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{ABC}\simeq53^0\)

b: Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\)(1) và \(AN\cdot NC=HN^2\)

ΔAHC vuông tại H

=>\(HA^2+HC^2=AC^2\)

=>\(AH^2=AC^2-HC^2\left(2\right)\)

Từ (1) và (2) suy ra \(AN\cdot AC=AC^2-HC^2\)

c: Xét tứ giác AMHN có \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

nên AMHN là hình chữ nhật

=>AH=MN

Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot MB=HM^2\)

\(AM\cdot AB+AN\cdot NC\)

\(=HM^2+HN^2\)

\(=MN^2=AH^2\)

d: \(\dfrac{BM}{CN}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)

\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}\)

\(=\left(\dfrac{AB^2}{BC}:\dfrac{AC^2}{BC}\right)^2\cdot\dfrac{AC}{AB}\)

\(=\left(\dfrac{AB}{AC}\right)^4\cdot\dfrac{AC}{AB}=\left(\dfrac{AB}{AC}\right)^3=tan^3C\)

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔABH=ΔACH

b: góc DAH=góc HAC=góc DHA

=>ΔDAH cân tại D

=>góc DHB=góc DBH

=>DH=DB=DA
=>D là trung điểm của AB

=>DH=1/2AB

12 tháng 5 2023

mình đg cần câu c bạn biết làm câu c không