K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2020

đề chính xác bạn ạ

1992 chứ không phải là 1892 nha bạn

31 tháng 5 2020

Mình nhầm . Xin lỗi bạn. Bạn đúng rồi

Vì p là số nguyên tố lớp hơn a nên p là số lẻ.

\(\Rightarrow\left(p+2015\right)\left(p+2017\right)⋮8\text{ }\)     (1)

Vì p là số nguyên tố lớn hơn 3 nên p có dạng \(3k+1\) và \(3k+2\) \(\left(k\inℕ^∗\right)\)

+) Với \(p=3k+1\)

 \(\Rightarrow\left(p+2015\right)\left(p+2017\right)=\left(3k+2016\right)\left(3k+2018\right)⋮3\) (Vì \(3k⋮3\text{ };\text{ }2016⋮3\) ở số đầu tiên)     (2)

+) Với \(p=3k+2\)

\(\Rightarrow\left(p+2015\right)\left(p+2017\right)=\left(3k+2017\right)\left(3k+2019\right)⋮3\) (Vì \(3k⋮3\text{ };\text{ }2019⋮3\) nên số thứ hai chia hết cho 3   (3)

Từ (1) ; (2) và (3), suy ra \(\left(p+2015\right)\left(p+2017\right)⋮24\) (đpcm)

11 tháng 6 2017

Vì p nguyên tố > 3 

=> p \(̸⋮\)3

=> p2 chia 3 dư 1 [vì số cp chia 3 dư 0,1]

Lại có: 2017 chia 3 dư 1

=> 2017 - p2 \(⋮3\)

Tương tự như trên, ta có:

p nguyên tố > 3 

=> p lẻ và p không chia hết cho 8

=> p2 chia 8 dư 1 [vì số cp chia 8 dư 0,1,4 và p lẻ]

Lại có: 2017 chia 8 dư 1

=> 2017 - p2 \(⋮\)8

Mà UCLN của 3 và 8 là 1 => 2017-p2 \(⋮\)24

11 tháng 6 2017

câu 2 chuyên HN 2017-2018 

7 tháng 7 2017

Vì p là số nguyên tố lớn hơn 3 nên p lẻ

=> p+2015 và p+2017 là 2 số chẵn liên tiếp

=> (p+2015)(p+2017) chia hết cho 8(1)

mặt khác p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 và 3k+2

Nếu p=3k+1 thì (p+2015)(p+2017)=(3k+1+2015)(3k+1+2017)=3(k+672)(3k+2018) chia hết cho 3=>(p+2015)(o+2017) chia hết cho 3(2)

Nếu p=3k+2 chứng minh tương tự ta đc (p+2015)(p+2017) chia hết cho 3(3)

Từ (1),(2),(3) => (p+20150(p+2017) chia hết cho 24

=> ĐPCM

19 tháng 3 2018

tìm x sao cho 2 + 2x+1 + 2x+2 + 2x+3  + ... +2x+2015 = 22017 - 2

giải giúp mình với

17 tháng 12 2023

nếu p là số nguyên tố lớn hơn 3 \(\Rightarrow\) p không chia hết cho 3

p2 không chia hết cho 3 ⇒ p2 không chia hết cho 24; 

Vậy không tồn tại số nguyên tố nào thỏa mãn đề bài.

Vì p là số nguyên tố >3 nên p là số lẻ

 2 số p-2,p+1 là 2 số chẵn liên tiếp

(p-2)(p+1) ⋮ cho 8 (1)

Vì p là số nguyên tố lớn hơn 3 nên

 p=3k+1 hoặc p=3k+2 (k thuộc N*)

+)Với p=3k+1  (p-2)(p+1)=3k(3k+2) ⋮ cho 3 (*)

+) Với p=3k+2  (p-2)(p+1)=(3k-1).3.(k+1) ⋮ 3 (**)

Từ (*) và (**) (p-2)(p+1) ⋮ 3 (2)

Vì (8;3)=1 → từ (1) và (2) => (p-2)(p+1) ⋮ 24

27 tháng 4 2017

đề kiểm tra học kì 2 lớp 6 phải ko? chữa lại làm zì nữa. em tui hôm qua cũng không làm được

27 tháng 4 2017

Câu đấy 0,5 điểm. Mình mất toi luôn.

4 tháng 1 2017

P là số nguyên tố lớn hơn 3 => P không chia hết cho 2 cho 3

Ta có :P không chia hết cho 2

=> P-1 và P+1 là 2 số chẵn liên tiếp => (P-1)(P+1) chia hết cho 8 (1)

Mặt khác:P không chia hết cho 3

Nếu P= 3k +1 thìP-1 =3k chia hết cho 3 => (P-1(P+1) chia hết cho 3

Tương tự: Nếu P= 3k+2 thìP+1=3k +3 chia hết cho 3 => (P-1(P+1) chia hết cho 3(2)

Từ (1)(2)=>(P-1)(P+1) chia hết cho 8 cho 3 mà (8;3)=1 =>(P-1)(P+1) chia hết cho 24 

4 tháng 1 2017

P =3k+1

P=3k+2

Trong TH này P có dạng 3k+2

Vậy ,ta có:

(3k+2-1)(3k+2+1)

vậy Ta KO CM ĐC

27 tháng 10 2015

Ta có :p-1;p;p+1 là 3 số liên tiếp nên sẽ có 1 số chia hết cho 3.

Mặt khác:p là số nguyên tố nên p không chia hết cho 3=>1 trong 2 số p-1;p+1 chia hết cho 3.(1)

Vì p nguyên tố lớn hơn 3=>p lẻ.=> p-1;p+1 chẵn.

Mặt khác: p-1;p+1 là hai số chẵn liên tiếp =>(p-1).(p+1) chia hết cho 8.(2)

Từ (1)và(2) =>(p-1).(p+1) chia hết cho 8.3 tức là 24.